Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

29-03-2020

Underwater Wireless Information Transfer with Compressive Sensing for Energy Efficiency

Authors: J. R. Arunkumar, R. Anusuya, M. Sundar Rajan, M. Ramkumar Prabhu

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acquisition of sensor data in wireless sensor networks with compressive sensing reduces the cost involved with sensing and communication. The challenge behind this work in underwater environment is exploring the fact of transfer capability of sensor nodes and underwater channel. The robustness of compressive sensing scheme in underwater environment is further augmented by recovery and transfer path. Two algorithms have been proposed. The first which uses compressive sensing at source and reconstruct using orthogonal matching pursuit at sink named as Underwater Wireless Information Transfer with Compressive sensing. Second algorithm exploits bandwidth estimation exploiting the cross traffic at intermediate forwarders for each source sensors to its associated sink named as: Underwater Wireless Information Transfer with Compressive sensing Bandwidth Measurements. Performance metrics of both protocols are interpreted through simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Q., Hempstead, M., & Yang, W. (2006, September). A realistic power consumption model for wireless sensor network devices. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks (Vol. 1, pp. 286–295). IEEE. Wang, Q., Hempstead, M., & Yang, W. (2006, September). A realistic power consumption model for wireless sensor network devices. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks (Vol. 1, pp. 286–295). IEEE.
2.
go back to reference Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory,52(1), 6–18.MathSciNetCrossRef Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory,52(1), 6–18.MathSciNetCrossRef
3.
go back to reference Li, X., Wang, C., Yang, Z., Yan, L., & Han, S. (2018). Energy-efficient and secure transmission scheme based on chaotic compressive sensing in underwater wireless sensor networks. Digital Signal Processing,81, 129–137.CrossRef Li, X., Wang, C., Yang, Z., Yan, L., & Han, S. (2018). Energy-efficient and secure transmission scheme based on chaotic compressive sensing in underwater wireless sensor networks. Digital Signal Processing,81, 129–137.CrossRef
4.
go back to reference Zhao, R., Long, H., Dobre, O. A., Shen, X., Ngatched, T. M., & Mei, H. (2019). Time reversal based MAC for multi-hop underwater acoustic networks. IEEE Systems Journal.,13(3), 2531–2542.CrossRef Zhao, R., Long, H., Dobre, O. A., Shen, X., Ngatched, T. M., & Mei, H. (2019). Time reversal based MAC for multi-hop underwater acoustic networks. IEEE Systems Journal.,13(3), 2531–2542.CrossRef
5.
go back to reference Domingo, M. C., & Prior, R. (2008). Energy analysis of routing protocols for underwater wireless sensor networks. Computer communications,31(6), 1227–1238.CrossRef Domingo, M. C., & Prior, R. (2008). Energy analysis of routing protocols for underwater wireless sensor networks. Computer communications,31(6), 1227–1238.CrossRef
6.
go back to reference Wan, L., Zhou, H., Xu, X., Huang, Y., Zhou, S., Shi, Z., & Cui, J. H. (2013, November). Field tests of adaptive modulation and coding for underwater acoustic OFDM. In Proceedings of the eighth ACM international conference on underwater networks and systems (p. 35). ACM. Wan, L., Zhou, H., Xu, X., Huang, Y., Zhou, S., Shi, Z., & Cui, J. H. (2013, November). Field tests of adaptive modulation and coding for underwater acoustic OFDM. In Proceedings of the eighth ACM international conference on underwater networks and systems (p. 35). ACM.
7.
go back to reference Berger, C. R., Zhou, S., Preisig, J. C., & Willett, P. (2009, May). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. In OCEANS 2009-EUROPE (pp. 1–8). IEEE. Berger, C. R., Zhou, S., Preisig, J. C., & Willett, P. (2009, May). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. In OCEANS 2009-EUROPE (pp. 1–8). IEEE.
8.
go back to reference Xu, Z., Zhang, L., Shen, J., Zhou, H., Liu, X., Cao, J., et al. (2019). MRCS: Matrix recovery-based communication-efficient compressive sampling on temporal-spatial data of dynamic-scale sparsity in large-scale environmental IoT networks. EURASIP Journal on Wireless Communications and Networking,2019(1), 18.CrossRef Xu, Z., Zhang, L., Shen, J., Zhou, H., Liu, X., Cao, J., et al. (2019). MRCS: Matrix recovery-based communication-efficient compressive sampling on temporal-spatial data of dynamic-scale sparsity in large-scale environmental IoT networks. EURASIP Journal on Wireless Communications and Networking,2019(1), 18.CrossRef
9.
go back to reference Xu, Y., Sun, G., Geng, T., & He, J. (2019). Low-energy data collection in wireless sensor networks based on matrix completion. Sensors,19(4), 945.CrossRef Xu, Y., Sun, G., Geng, T., & He, J. (2019). Low-energy data collection in wireless sensor networks based on matrix completion. Sensors,19(4), 945.CrossRef
10.
go back to reference Kong, L., Xia, M., Liu, X. Y., Wu, M. Y., & Liu, X. (2013, April). Data loss and reconstruction in sensor networks. In 2013 proceedings IEEE INFOCOM (pp. 1654–1662). IEEE. Kong, L., Xia, M., Liu, X. Y., Wu, M. Y., & Liu, X. (2013, April). Data loss and reconstruction in sensor networks. In 2013 proceedings IEEE INFOCOM (pp. 1654–1662). IEEE.
11.
go back to reference Singh, V. K., Verma, S., & Kumar, M. (2019). ODECS: An on-demand explosion-based compressed sensing using random walks in wireless sensor networks. IEEE Systems Journal,13(3), 2466–2475.CrossRef Singh, V. K., Verma, S., & Kumar, M. (2019). ODECS: An on-demand explosion-based compressed sensing using random walks in wireless sensor networks. IEEE Systems Journal,13(3), 2466–2475.CrossRef
12.
go back to reference Jahanshahi, J. A., Danyali, H., & Helfroush, M. S. (2019). A modified compressed sensing-based recovery algorithm for wireless sensor networks. Radio Engineering,28(3), 610–617. Jahanshahi, J. A., Danyali, H., & Helfroush, M. S. (2019). A modified compressed sensing-based recovery algorithm for wireless sensor networks. Radio Engineering,28(3), 610–617.
13.
go back to reference Gan, H., Xiao, S., Zhang, Z., Shan, S., & Gao, Y. (2019). Chaotic compressive sampling matrix: Where sensing architecture meets sinusoidal iterator. Circuits, Systems, and Signal Processing, 1–22. Gan, H., Xiao, S., Zhang, Z., Shan, S., & Gao, Y. (2019). Chaotic compressive sampling matrix: Where sensing architecture meets sinusoidal iterator. Circuits, Systems, and Signal Processing, 1–22.
14.
go back to reference Wang, B., Ge, Y., He, C., Wu, Y., & Zhu, Z. (2019). Study on communication channel estimation by improved SOMP based on distributed compressed sensing. EURASIP Journal on Wireless Communications and Networking,2019(1), 121.CrossRef Wang, B., Ge, Y., He, C., Wu, Y., & Zhu, Z. (2019). Study on communication channel estimation by improved SOMP based on distributed compressed sensing. EURASIP Journal on Wireless Communications and Networking,2019(1), 121.CrossRef
15.
go back to reference Erdem, H. E., Yildiz, H. U., & Gungor, V. C. (2019). On the lifetime of compressive sensing based energy harvesting in underwater sensor networks. IEEE Sensors Journal,19(12), 4680–4687.CrossRef Erdem, H. E., Yildiz, H. U., & Gungor, V. C. (2019). On the lifetime of compressive sensing based energy harvesting in underwater sensor networks. IEEE Sensors Journal,19(12), 4680–4687.CrossRef
16.
go back to reference Lin, Y., Tao, H., Tu, Y., & Liu, T. (2019). A node self-localization algorithm with a mobile anchor node in underwater acoustic sensor networks. IEEE Access,7, 43773–43780.CrossRef Lin, Y., Tao, H., Tu, Y., & Liu, T. (2019). A node self-localization algorithm with a mobile anchor node in underwater acoustic sensor networks. IEEE Access,7, 43773–43780.CrossRef
17.
go back to reference Wu, F. Y., Yang, K., Duan, R., & Tian, T. (2018). Compressive sampling and reconstruction of acoustic signal in underwater wireless sensor networks. IEEE Sensors Journal,18(14), 5876–5884.CrossRef Wu, F. Y., Yang, K., Duan, R., & Tian, T. (2018). Compressive sampling and reconstruction of acoustic signal in underwater wireless sensor networks. IEEE Sensors Journal,18(14), 5876–5884.CrossRef
18.
go back to reference Sun, T., Li, J., & Blondel, P. (2019). Direct under-sampling compressive sensing method for underwater echo signals and physical implementation. Applied Sciences,9(21), 4596.CrossRef Sun, T., Li, J., & Blondel, P. (2019). Direct under-sampling compressive sensing method for underwater echo signals and physical implementation. Applied Sciences,9(21), 4596.CrossRef
19.
go back to reference Engmann, F., Katsriku, F. A., Abdulai, J. D., Adu-Manu, K. S., & Banaseka, F. K. (2018). Prolonging the lifetime of wireless sensor networks: A review of current techniques. Wireless Communications and Mobile Computing,2018, 1–22.CrossRef Engmann, F., Katsriku, F. A., Abdulai, J. D., Adu-Manu, K. S., & Banaseka, F. K. (2018). Prolonging the lifetime of wireless sensor networks: A review of current techniques. Wireless Communications and Mobile Computing,2018, 1–22.CrossRef
20.
go back to reference Anand, J. V., & Titus, S. (2014, October). Regression based analysis of effective hydrocast in underwater environment. In TENCON 2014–2014 IEEE region 10 conference (pp. 1–6). IEEE. Anand, J. V., & Titus, S. (2014, October). Regression based analysis of effective hydrocast in underwater environment. In TENCON 2014–2014 IEEE region 10 conference (pp. 1–6). IEEE.
21.
go back to reference Anand, J. V., & Titus, S. (2017). Energy efficiency analysis of effective hydrocast for underwater communication. International Journal of Acoustics & Vibration,22(1), 44–50.CrossRef Anand, J. V., & Titus, S. (2017). Energy efficiency analysis of effective hydrocast for underwater communication. International Journal of Acoustics & Vibration,22(1), 44–50.CrossRef
22.
go back to reference Pu, L., Luo, Y., Mo, H., Le, S., Peng, Z., Cui, J. H., et al. (2015). Comparing underwater MAC protocols in real sea experiments. Computer Communications,56, 47–59.CrossRef Pu, L., Luo, Y., Mo, H., Le, S., Peng, Z., Cui, J. H., et al. (2015). Comparing underwater MAC protocols in real sea experiments. Computer Communications,56, 47–59.CrossRef
23.
go back to reference Le, S. N., Peng, Z., Cui, J. H., Zhou, H., & Liao, J. (2013, November). SeaLinx: A multi-instance protocol stack architecture for underwater networking. In Proceedings of the eighth ACM international conference on underwater networks and systems (p. 46). ACM. Le, S. N., Peng, Z., Cui, J. H., Zhou, H., & Liao, J. (2013, November). SeaLinx: A multi-instance protocol stack architecture for underwater networking. In Proceedings of the eighth ACM international conference on underwater networks and systems (p. 46). ACM.
24.
go back to reference Otnes, R., van Walree, P. A., Buen, H., & Song, H. (2015). Underwater acoustic network simulation with lookup tables from physical-layer replay. IEEE Journal of Oceanic Engineering,40(4), 822–840.CrossRef Otnes, R., van Walree, P. A., Buen, H., & Song, H. (2015). Underwater acoustic network simulation with lookup tables from physical-layer replay. IEEE Journal of Oceanic Engineering,40(4), 822–840.CrossRef
25.
go back to reference Ibrahim, M., Iqbal, M. A., Aleem, M., & Islam, M. A. (2018). SIM-cumulus: An academic cloud for the provisioning of network-simulation-as-a-service (NSaaS). IEEE Access,6, 27313–27323.CrossRef Ibrahim, M., Iqbal, M. A., Aleem, M., & Islam, M. A. (2018). SIM-cumulus: An academic cloud for the provisioning of network-simulation-as-a-service (NSaaS). IEEE Access,6, 27313–27323.CrossRef
26.
go back to reference Aceto, G., Persico, V., Pescapé, A., & Ventre, G. (2017, June). Sometime: Software defined network-based available bandwidth measurement in monroe. In 2017 network traffic measurement and analysis conference (TMA) (pp. 1–6). IEEE. Aceto, G., Persico, V., Pescapé, A., & Ventre, G. (2017, June). Sometime: Software defined network-based available bandwidth measurement in monroe. In 2017 network traffic measurement and analysis conference (TMA) (pp. 1–6). IEEE.
27.
go back to reference Xie, P., Zhou, Z., Peng, Z., Yan, H., Hu, T., Cui, J. H., & Zhou, S. (2009, October). Aqua-Sim: An NS-2 based simulator for underwater sensor networks. In OCEANS 2009 (pp. 1–7). IEEE. Xie, P., Zhou, Z., Peng, Z., Yan, H., Hu, T., Cui, J. H., & Zhou, S. (2009, October). Aqua-Sim: An NS-2 based simulator for underwater sensor networks. In OCEANS 2009 (pp. 1–7). IEEE.
28.
go back to reference Ribeiro, V. J., Riedi, R. H., & Baraniuk, R. G. (2004, June). Spatio-temporal available bandwidth estimation with STAB. In ACM SIGMETRICS performance evaluation review (Vol. 32, No. 1, pp. 394–395). ACM. Ribeiro, V. J., Riedi, R. H., & Baraniuk, R. G. (2004, June). Spatio-temporal available bandwidth estimation with STAB. In ACM SIGMETRICS performance evaluation review (Vol. 32, No. 1, pp. 394–395). ACM.
Metadata
Title
Underwater Wireless Information Transfer with Compressive Sensing for Energy Efficiency
Authors
J. R. Arunkumar
R. Anusuya
M. Sundar Rajan
M. Ramkumar Prabhu
Publication date
29-03-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07249-7

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue