Skip to main content
Top
Published in: Measurement Techniques 7/2011

01-10-2011

Unification of hardness determination and possibility of transferring it to dimensional values

Authors: K. V. Gogolinskii, V. N. Reshetov, A. S. Useinov

Published in: Measurement Techniques | Issue 7/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main methods of material hardness measurement and the state of metrological provisions for this form of measurement within the Russian Federation are given in brief. Features of measurement in the nanometer range of indentation depths, and also some problems of providing unification of hardness measurements in this field are analyzed. An approach is proposed making it possible to compare measurement results in different ranges of linear dimensions (from micro- to nanometric). Research performed using a novel type of scanning nanohardness meter confirms the possibility of comparing hardness data obtained by different methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference GOST 8.062–85, GSI. State Special Standard and State Verification Scheme for Hardness Measurement Provisions by the Brinell Scale. GOST 8.062–85, GSI. State Special Standard and State Verification Scheme for Hardness Measurement Provisions by the Brinell Scale.
2.
go back to reference GOST R ISO 6507-1–2007, Metals and Alloys. Vickers Hardness Measurement. Part 1. Measurement Method. GOST R ISO 6507-1–2007, Metals and Alloys. Vickers Hardness Measurement. Part 1. Measurement Method.
3.
go back to reference GOST 9450–76, Microhardness Measurement by Indentation of Diamond Tips. GOST 9450–76, Microhardness Measurement by Indentation of Diamond Tips.
4.
go back to reference GOST 9013–59, Metals. Rockwell Method of Hardness Measurement. GOST 9013–59, Metals. Rockwell Method of Hardness Measurement.
5.
go back to reference ISO 14577:2002, 2007, Metallic Materials Determination of Hardness and Other Material Parameters by the Instrument Method of Indentation, Parts 1–4. ISO 14577:2002, 2007, Metallic Materials Determination of Hardness and Other Material Parameters by the Instrument Method of Indentation, Parts 1–4.
6.
go back to reference ASTM E 2546–07, Standard Practice for Instrumented Indentation Testing. ASTM E 2546–07, Standard Practice for Instrumented Indentation Testing.
7.
go back to reference GOST 8.516–2001, GSI. State Verification Scheme for Measurement Provisions of the Hardness of Metals According to the Shore Scale D. GOST 8.516–2001, GSI. State Verification Scheme for Measurement Provisions of the Hardness of Metals According to the Shore Scale D.
8.
go back to reference V. K. Grigorovich, Hardness and Microhardness of Metals [in Russian], Nauka, Moscow (1976). V. K. Grigorovich, Hardness and Microhardness of Metals [in Russian], Nauka, Moscow (1976).
9.
go back to reference W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” J. Mater. Res. 19, No. 1, 3–20 (2004).ADSCrossRef W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” J. Mater. Res. 19, No. 1, 3–20 (2004).ADSCrossRef
10.
go back to reference E. M. Morozov and M. V. Zernin, Contact Problems of Failure Mechanics [in Russian], Mashinostroenie, Moscow (1999). E. M. Morozov and M. V. Zernin, Contact Problems of Failure Mechanics [in Russian], Mashinostroenie, Moscow (1999).
11.
go back to reference B. Bhushan, Handbook of Micro/Nanotribology, CRC Press, Bocca Raton (1999). B. Bhushan, Handbook of Micro/Nanotribology, CRC Press, Bocca Raton (1999).
12.
go back to reference W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacements sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564–1583 (1992).ADSCrossRef W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacements sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564–1583 (1992).ADSCrossRef
13.
go back to reference S. I. Bulychev and V. P. Alekhin, Testing of Materials by Continuous Indentor Impression [in Russian], Mashinostroenie, Moscow (1990). S. I. Bulychev and V. P. Alekhin, Testing of Materials by Continuous Indentor Impression [in Russian], Mashinostroenie, Moscow (1990).
14.
go back to reference F. Frohlich, P. Grau, and W. Grellman, “Performance and analysis of recording microhardness,” Phys. Status Solidi A., 42, 79 (1977).ADSCrossRef F. Frohlich, P. Grau, and W. Grellman, “Performance and analysis of recording microhardness,” Phys. Status Solidi A., 42, 79 (1977).ADSCrossRef
15.
go back to reference J. L. Loubet,, et al., “Vickers indentation curves of magnesium oxide,” J. Tribol., 106, 43 (1984).CrossRef J. L. Loubet,, et al., “Vickers indentation curves of magnesium oxide,” J. Tribol., 106, 43 (1984).CrossRef
16.
go back to reference M. F. Doerner and W. D. Nix, “A method for interpreting the data from depth sensing indentation instruments,” J. Mater. Res., 1, No. 4, 601–609 (1986).ADSCrossRef M. F. Doerner and W. D. Nix, “A method for interpreting the data from depth sensing indentation instruments,” J. Mater. Res., 1, No. 4, 601–609 (1986).ADSCrossRef
17.
go back to reference S. S. Useinov et al., “Features of application of the nanoindentation method for measuring hardness on a nanoscale,” Nanotekhnika, No. 1(13), 111–115 (2008). S. S. Useinov et al., “Features of application of the nanoindentation method for measuring hardness on a nanoscale,” Nanotekhnika, No. 1(13), 111–115 (2008).
18.
go back to reference K. V. Gogolinskii, N. A. Lvova, and A. S. Useinov, “Application scanning probe microscopes and nanohardness meters for studying the mechanical properties of solid materials at a nanolevel,” Zavod. Lab, 73, No. 6, 28–36 (2007). K. V. Gogolinskii, N. A. Lvova, and A. S. Useinov, “Application scanning probe microscopes and nanohardness meters for studying the mechanical properties of solid materials at a nanolevel,” Zavod. Lab, 73, No. 6, 28–36 (2007).
19.
go back to reference K. V. Gogolinskii et al., “Development of metrological complex for providing unification of measuring surface properties in a nanorange based on a scanning probe microscope NanoScan-3D,” Zakonodat. Prikl. Metr., No. 1(107), 33–34 (2010). K. V. Gogolinskii et al., “Development of metrological complex for providing unification of measuring surface properties in a nanorange based on a scanning probe microscope NanoScan-3D,” Zakonodat. Prikl. Metr., No. 1(107), 33–34 (2010).
20.
go back to reference M. M. Khrushchev (ed.), Sclerometry, [in Russian], Nauka, Moscow (1968). M. M. Khrushchev (ed.), Sclerometry, [in Russian], Nauka, Moscow (1968).
21.
go back to reference W. D. Nix and H. Gao, “Indentation size effect in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Sol., 46, No. 3, 411–425 (1998).ADSMATHCrossRef W. D. Nix and H. Gao, “Indentation size effect in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Sol., 46, No. 3, 411–425 (1998).ADSMATHCrossRef
22.
go back to reference K. Durst et al., “Indentation size effect in metallic materials: modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations,” Acta Mater., 54, 2547–2555 (2006).CrossRef K. Durst et al., “Indentation size effect in metallic materials: modelling strength from pop-in to macroscopic hardness using geometrically necessary dislocations,” Acta Mater., 54, 2547–2555 (2006).CrossRef
23.
go back to reference K. Durst, M. Goken, and G. M. Pharr, “Indentation size effect in spherical and pyramidal indentations,” J. Phys. D: Appl. Phys., 41 (074005), 1–5 (2008). K. Durst, M. Goken, and G. M. Pharr, “Indentation size effect in spherical and pyramidal indentations,” J. Phys. D: Appl. Phys., 41 (074005), 1–5 (2008).
Metadata
Title
Unification of hardness determination and possibility of transferring it to dimensional values
Authors
K. V. Gogolinskii
V. N. Reshetov
A. S. Useinov
Publication date
01-10-2011
Publisher
Springer US
Published in
Measurement Techniques / Issue 7/2011
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-011-9804-y

Other articles of this Issue 7/2011

Measurement Techniques 7/2011 Go to the issue