Skip to main content
Top
Published in:

11-05-2024

Unified Image Harmonization with Region Augmented Attention Normalization

Authors: Junjie Hou, Yuqi Zhang, Duo Su

Published in: Annals of Data Science | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The image harmonization task endeavors to adjust foreground information within an image synthesis process to achieve visual consistency by leveraging background information. In academic research, this task conventionally involves the utilization of simple synthesized images and matching masks as inputs. However, obtaining precise masks for image harmonization in practical applications poses a significant challenge, thereby creating a notable disparity between research findings and real-world applicability. To mitigate this disparity, we propose a redefinition of the image harmonization task as “Unified Image Harmonization,” where the input comprises only a single image, thereby enhancing its applicability in real-world scenarios. To address this challenge, we have developed a novel framework. Within this framework, we initially employ inharmonious region localization to detect the mask, which is subsequently utilized for harmonization tasks. The pivotal aspect of the harmonization process lies in normalization, which is accountable for information transfer. Nonetheless, the current background-to-foreground information transfer and guidance mechanisms are limited by single-layer guidance, thereby constraining their effectiveness. To overcome this limitation, we introduce Region Augmented Attention Normalization (RA2N), which enhances the attention mechanism for foreground feature alignment, consequently leading to improved alignment and transfer capabilities. Through qualitative and quantitative comparisons on the iHarmony4 dataset, our model exhibits exceptional performance not only in unified image harmonization but also in conventional image harmonization tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cong W, Zhang J, Niu L, et al (2020) Dovenet: deep image harmonization via domain verification. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) pp 8391–8400 Cong W, Zhang J, Niu L, et al (2020) Dovenet: deep image harmonization via domain verification. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) pp 8391–8400
2.
go back to reference Shi Y (2022) Advances in big data analytics. Adv Big Data Anal Shi Y (2022) Advances in big data analytics. Adv Big Data Anal
3.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin New York
4.
go back to reference Shi Y, Tian Y, Kou G et al (2011) Optimization based data mining: theory and applications. Springer Science & Business Media, BerlinCrossRef Shi Y, Tian Y, Kou G et al (2011) Optimization based data mining: theory and applications. Springer Science & Business Media, BerlinCrossRef
5.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef
6.
go back to reference Liang J, Niu L, Zhang L (2021) Inharmonious region localization. In: 2021 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6 Liang J, Niu L, Zhang L (2021) Inharmonious region localization. In: 2021 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6
7.
go back to reference Liang J, Niu L, Wu P, et al (2022) Inharmonious region localization by magnifying domain discrepancy. In: Proceedings of the AAAI conference on artificial intelligence, pp 1574–1582 Liang J, Niu L, Wu P, et al (2022) Inharmonious region localization by magnifying domain discrepancy. In: Proceedings of the AAAI conference on artificial intelligence, pp 1574–1582
8.
go back to reference Chen M, Fridrich J, Goljan M et al (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inf Forensics Secur 3(1):74–90CrossRef Chen M, Fridrich J, Goljan M et al (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inf Forensics Secur 3(1):74–90CrossRef
9.
go back to reference Zhang L, Wen T, Shi J (2020) Deep image blending. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV) Zhang L, Wen T, Shi J (2020) Deep image blending. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV)
10.
go back to reference Reinhard E, Adhikhmin M, Gooch B et al (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41CrossRef Reinhard E, Adhikhmin M, Gooch B et al (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41CrossRef
11.
go back to reference Lalonde JF, Efros AA (2007) Using color compatibility for assessing image realism. In: 2007 IEEE 11th international conference on computer vision, IEEE, pp 1–8 Lalonde JF, Efros AA (2007) Using color compatibility for assessing image realism. In: 2007 IEEE 11th international conference on computer vision, IEEE, pp 1–8
13.
go back to reference Tao MW, Johnson MK, Paris S (2010) Error-tolerant image compositing. European conference on computer vision. Springer, Berlin, pp 31–44 Tao MW, Johnson MK, Paris S (2010) Error-tolerant image compositing. European conference on computer vision. Springer, Berlin, pp 31–44
14.
go back to reference Xue S, Agarwala A, Dorsey J et al (2012) Understanding and improving the realism of image composites. ACM Trans Graph (TOG) 31(4):1–10CrossRef Xue S, Agarwala A, Dorsey J et al (2012) Understanding and improving the realism of image composites. ACM Trans Graph (TOG) 31(4):1–10CrossRef
15.
go back to reference Song S, Zhong F, Qin X, et al (2020) Illumination harmonization with gray mean scale. In: Computer graphics international conference, Springer, Berlin, pp 193–205 Song S, Zhong F, Qin X, et al (2020) Illumination harmonization with gray mean scale. In: Computer graphics international conference, Springer, Berlin, pp 193–205
16.
go back to reference Xiaohui S, Lin Z, Tsai YH, et al (2020) Harmonizing composite images using deep learning. US Patent 10,867,416 Xiaohui S, Lin Z, Tsai YH, et al (2020) Harmonizing composite images using deep learning. US Patent 10,867,416
17.
go back to reference Xue B, Ran S, Chen Q, et al (2022) Dccf: deep comprehensible color filter learning framework for high-resolution image harmonization. In: Proceedings of the European conference on computer vision (ECCV) Xue B, Ran S, Chen Q, et al (2022) Dccf: deep comprehensible color filter learning framework for high-resolution image harmonization. In: Proceedings of the European conference on computer vision (ECCV)
18.
go back to reference Ke Z, Sun C, Zhu L, et al (2022) Harmonizer: Learning to Perform White-Box Image and Video Harmonization. In: Proceedings of the European conference on computer vision (ECCV) Ke Z, Sun C, Zhu L, et al (2022) Harmonizer: Learning to Perform White-Box Image and Video Harmonization. In: Proceedings of the European conference on computer vision (ECCV)
19.
go back to reference Gardner MA, Sunkavalli K, Yumer E, et al (2017) Learning to predict indoor illumination from a single image. arXiv preprint arXiv:1704.00090 Gardner MA, Sunkavalli K, Yumer E, et al (2017) Learning to predict indoor illumination from a single image. arXiv preprint arXiv:​1704.​00090
20.
go back to reference Hold-Geoffroy Y, Sunkavalli K, Hadap S, et al (2017) Deep outdoor illumination estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) Hold-Geoffroy Y, Sunkavalli K, Hadap S, et al (2017) Deep outdoor illumination estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
21.
go back to reference Guo Z, Zheng H, Jiang Y, et al (2021) Intrinsic image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 16367–16376 Guo Z, Zheng H, Jiang Y, et al (2021) Intrinsic image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 16367–16376
23.
go back to reference Bao Z, Long C, Fu G, et al (2022) Deep image-based illumination harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18542–18551 Bao Z, Long C, Fu G, et al (2022) Deep image-based illumination harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18542–18551
24.
go back to reference Zhan F, Lu S, Zhang C et al (2021) Adversarial image composition with auxiliary illumination. In: Ishikawa H, Liu CL, Pajdla T et al (eds) Computer vision - ACCV 2020. Springer International Publishing, Cham, pp 234–250CrossRef Zhan F, Lu S, Zhang C et al (2021) Adversarial image composition with auxiliary illumination. In: Ishikawa H, Liu CL, Pajdla T et al (eds) Computer vision - ACCV 2020. Springer International Publishing, Cham, pp 234–250CrossRef
25.
go back to reference Ren X, Liu Y (2022) Semantic-guided multi-mask image harmonization. In: Proceedings of the European conference on computer vision (ECCV) Ren X, Liu Y (2022) Semantic-guided multi-mask image harmonization. In: Proceedings of the European conference on computer vision (ECCV)
26.
go back to reference Guo Z, Guo D, Zheng H, et al (2021) Image harmonization with transformer. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14870–14879 Guo Z, Guo D, Zheng H, et al (2021) Image harmonization with transformer. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14870–14879
29.
go back to reference Yu J, Lin Z, Yang J, et al (2018) Generative image inpainting with contextual attention. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5505–5514 Yu J, Lin Z, Yang J, et al (2018) Generative image inpainting with contextual attention. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5505–5514
31.
go back to reference Cun X, Pun CM (2020) Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans Image Process 29:4759–4771CrossRef Cun X, Pun CM (2020) Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans Image Process 29:4759–4771CrossRef
32.
go back to reference Hao G, Iizuka S, Fukui K (2020) Image harmonization with attention-based deep feature modulation. In: The British machine vision conference (BMCV) Hao G, Iizuka S, Fukui K (2020) Image harmonization with attention-based deep feature modulation. In: The British machine vision conference (BMCV)
33.
go back to reference Wang C, Tang F, Zhang Y, et al (2021) Towards harmonized regional style transfer and manipulation for facial images. arXiv preprint arXiv:2104.14109 Wang C, Tang F, Zhang Y, et al (2021) Towards harmonized regional style transfer and manipulation for facial images. arXiv preprint arXiv:​2104.​14109
34.
go back to reference Cong W, Tao X, Niu L, et al (2022) High-resolution image harmonization via collaborative dual transformations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18470–18479 Cong W, Tao X, Niu L, et al (2022) High-resolution image harmonization via collaborative dual transformations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18470–18479
35.
go back to reference Ling J, Xue H, Song L, et al (2021) Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9361–9370 Ling J, Xue H, Song L, et al (2021) Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9361–9370
36.
go back to reference Liang J, Niu L, Zhang L (2021) Inharmonious region localization. In: 2021 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6 Liang J, Niu L, Zhang L (2021) Inharmonious region localization. In: 2021 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6
37.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, pp 448–456
38.
go back to reference Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:​1607.​08022
39.
go back to reference Yu T, Guo Z, Jin X, et al (2020) Region normalization for image inpainting. In: Proceedings of the AAAI conference on artificial intelligence, pp 12733–12740 Yu T, Guo Z, Jin X, et al (2020) Region normalization for image inpainting. In: Proceedings of the AAAI conference on artificial intelligence, pp 12733–12740
40.
go back to reference Zhao W, Liu X, Zhao Y et al (2021) Normalnet: learning-based mesh normal denoising via local partition normalization. IEEE Trans Circuits Syst Video Technol 31(12):4697–4710CrossRef Zhao W, Liu X, Zhao Y et al (2021) Normalnet: learning-based mesh normal denoising via local partition normalization. IEEE Trans Circuits Syst Video Technol 31(12):4697–4710CrossRef
41.
go back to reference Park T, Liu MY, Wang TC, et al (2019) Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2337–2346 Park T, Liu MY, Wang TC, et al (2019) Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2337–2346
42.
go back to reference Hang Y, Xia B, Yang W, et al (2022) Scs-co: self-consistent style contrastive learning for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 19710–19719 Hang Y, Xia B, Yang W, et al (2022) Scs-co: self-consistent style contrastive learning for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 19710–19719
47.
go back to reference Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
48.
go back to reference Xue A (2021) End-to-end chinese landscape painting creation using generative adversarial networks. In: Proceedings of the IEEE/CVF Winter conference on applications of computer vision, pp 3863–3871 Xue A (2021) End-to-end chinese landscape painting creation using generative adversarial networks. In: Proceedings of the IEEE/CVF Winter conference on applications of computer vision, pp 3863–3871
51.
go back to reference Bhattacharjee D, Zhang T, Süsstrunk S, et al (2022) Mult: An end-to-end multitask learning transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12031–12041 Bhattacharjee D, Zhang T, Süsstrunk S, et al (2022) Mult: An end-to-end multitask learning transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12031–12041
52.
go back to reference Wu D, Liao MW, Zhang WT et al (2022) Yolop: you only look once for panoptic driving perception. Mach Intell Res 19(6):550–562CrossRef Wu D, Liao MW, Zhang WT et al (2022) Yolop: you only look once for panoptic driving perception. Mach Intell Res 19(6):550–562CrossRef
55.
go back to reference Xiao Y, Li Y, Wu Y, et al (2019) Auto-retoucher (art)-a framework for background replacement and foreground adjustment. In: 2019 16th international conference on machine vision applications (MVA), IEEE, pp 1–5 Xiao Y, Li Y, Wu Y, et al (2019) Auto-retoucher (art)-a framework for background replacement and foreground adjustment. In: 2019 16th international conference on machine vision applications (MVA), IEEE, pp 1–5
56.
go back to reference Zhang L, Wang J, Xu Y, et al (2020) Nested scale-editing for conditional image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) Zhang L, Wang J, Xu Y, et al (2020) Nested scale-editing for conditional image synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)
57.
go back to reference Zhang R, Li W, Zhang Y, et al (2021) Image re-composition via regional content-style decoupling. In: Proceedings of the 29th ACM international conference on multimedia, pp 3–11 Zhang R, Li W, Zhang Y, et al (2021) Image re-composition via regional content-style decoupling. In: Proceedings of the 29th ACM international conference on multimedia, pp 3–11
58.
go back to reference Wu P, Niu L, Zhang L (2022) Inharmonious region localization with auxiliary style feature. In: BMVC Wu P, Niu L, Zhang L (2022) Inharmonious region localization with auxiliary style feature. In: BMVC
60.
go back to reference Huang H, Xu S, Cai J, et al (2018) Temporally coherent video harmonization using adversarial networks. arXiv preprint arXiv:1809.01372 Huang H, Xu S, Cai J, et al (2018) Temporally coherent video harmonization using adversarial networks. arXiv preprint arXiv:​1809.​01372
62.
go back to reference Li J, Wen Y, He L (2023) Scconv: spatial and channel reconstruction convolution for feature redundancy. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 6153–6162 Li J, Wen Y, He L (2023) Scconv: spatial and channel reconstruction convolution for feature redundancy. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 6153–6162
63.
go back to reference Chen H, Gu Z, Li Y, et al (2023) Hierarchical dynamic image harmonization. In: ACM Multimedia Chen H, Gu Z, Li Y, et al (2023) Hierarchical dynamic image harmonization. In: ACM Multimedia
64.
go back to reference Thabtah F, Zhang L, Abdelhamid N (2019) Nba game result prediction using feature analysis and machine learning. Ann Data Sci 6(1):103–116CrossRef Thabtah F, Zhang L, Abdelhamid N (2019) Nba game result prediction using feature analysis and machine learning. Ann Data Sci 6(1):103–116CrossRef
65.
go back to reference Reddy SR, Varma GS, Davuluri RL (2024) Deep neural network (DNN) mechanism for identification of diseased and healthy plant leaf images using computer vision. Ann Data Sci 11(1):243–272CrossRef Reddy SR, Varma GS, Davuluri RL (2024) Deep neural network (DNN) mechanism for identification of diseased and healthy plant leaf images using computer vision. Ann Data Sci 11(1):243–272CrossRef
67.
go back to reference Li B, Wu F, Weinberger KQ, et al (2019) Positional normalization. Adv Neural Inf Process Syst 32 Li B, Wu F, Weinberger KQ, et al (2019) Positional normalization. Adv Neural Inf Process Syst 32
68.
go back to reference Wang Q, Ma Y, Zhao K, et al (2020) A comprehensive survey of loss functions in machine learning. Ann Data Sci, 1–26 Wang Q, Ma Y, Zhao K, et al (2020) A comprehensive survey of loss functions in machine learning. Ann Data Sci, 1–26
69.
go back to reference Sofiiuk K, Popenova P, Konushin A (2021) Foreground-aware semantic representations for image harmonization. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1620–1629 Sofiiuk K, Popenova P, Konushin A (2021) Foreground-aware semantic representations for image harmonization. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 1620–1629
70.
go back to reference Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: Leibe B, Matas J, Sebe N et al (eds) Computer vision - ECCV 2016. Springer International Publishing, Cham, pp 694–711CrossRef Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: Leibe B, Matas J, Sebe N et al (eds) Computer vision - ECCV 2016. Springer International Publishing, Cham, pp 694–711CrossRef
72.
go back to reference Zhu JY, Krahenbuhl P, Shechtman E, et al (2015) Learning a discriminative model for the perception of realism in composite images. In: Proceedings of the IEEE international conference on computer vision, pp 3943–3951 Zhu JY, Krahenbuhl P, Shechtman E, et al (2015) Learning a discriminative model for the perception of realism in composite images. In: Proceedings of the IEEE international conference on computer vision, pp 3943–3951
73.
go back to reference Jiang Y, Zhang H, Zhang J, et al (2021) Ssh: a self-supervised framework for image harmonization. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 4832–4841 Jiang Y, Zhang H, Zhang J, et al (2021) Ssh: a self-supervised framework for image harmonization. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 4832–4841
74.
go back to reference Hao G, Iizuka S, Fukui K (2020) Image harmonization with attention-based deep feature modulation. In: BMVC Hao G, Iizuka S, Fukui K (2020) Image harmonization with attention-based deep feature modulation. In: BMVC
76.
go back to reference Liu S, Huynh CP, Chen C, et al (2023) Lemart: Label-efficient masked region transform for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18290–18299 Liu S, Huynh CP, Chen C, et al (2023) Lemart: Label-efficient masked region transform for image harmonization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 18290–18299
77.
go back to reference Guerreiro JJA, Nakazawa M, Stenger B (2023) Pct-net: full resolution image harmonization using pixel-wise color transformations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 5917–5926 Guerreiro JJA, Nakazawa M, Stenger B (2023) Pct-net: full resolution image harmonization using pixel-wise color transformations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 5917–5926
Metadata
Title
Unified Image Harmonization with Region Augmented Attention Normalization
Authors
Junjie Hou
Yuqi Zhang
Duo Su
Publication date
11-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 5/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00531-6

Premium Partner