Skip to main content
Top

2024 | OriginalPaper | Chapter

Uniqueness Functions to Conformable Differential Inclusions

Authors : Tzanko Donchev, Jamil Abbas, Iveta Nikolova, Stanislava Stoilova

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study conformable evolution inclusions with the help of uniqueness (Perron) functions. Our conditions are much weaker than commonly used Lipschitz continuity. Existence of solutions, continuous dependence on the initial conditions and relaxation theorem have been proved. Finally we study conformable differential inclusions under one sided Lipshitz condition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015) 57–66.
2.
go back to reference T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Frac. 119 (2019) 94–101. T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Frac. 119 (2019) 94–101.
3.
go back to reference S. Al-Sharif, M. Al Horani, R. Khalil, The Hille-Yosida theorem for conformable fractional semi-groups of operators. Missouri J. Math. Sci. 33 (2021) 18–26. S. Al-Sharif, M. Al Horani, R. Khalil, The Hille-Yosida theorem for conformable fractional semi-groups of operators. Missouri J. Math. Sci. 33 (2021) 18–26.
4.
go back to reference M. Bouaouid, K. Hilal, S. Melliani, Existence of mild solutions for conformable fractional differential equations with nonlocal conditions. Rocky Mountain J. Math., 50(3) (2020) 871–879. M. Bouaouid, K. Hilal, S. Melliani, Existence of mild solutions for conformable fractional differential equations with nonlocal conditions. Rocky Mountain J. Math., 50(3) (2020) 871–879.
5.
go back to reference A. Boukenkoul, M. Ziane, Conformable functional evolution equations with nonlocal conditions in Banach spaces, Surv. Math. Anal 18 (2023) 83–95. A. Boukenkoul, M. Ziane, Conformable functional evolution equations with nonlocal conditions in Banach spaces, Surv. Math. Anal 18 (2023) 83–95.
6.
go back to reference A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces. Differ. Equ. Dyn. Syst. 27 (2019) 313–325. A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces. Differ. Equ. Dyn. Syst. 27 (2019) 313–325.
7.
go back to reference R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70.
8.
go back to reference D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54:3 (2017) 903–917. D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54:3 (2017) 903–917.
9.
go back to reference H. Zhou, S. Yang, S. Zhang, Conformable derivative approach to anomalous diffusion. Phys. Stat. Mech. Its Appl. 491 (2018) 1001–1013. H. Zhou, S. Yang, S. Zhang, Conformable derivative approach to anomalous diffusion. Phys. Stat. Mech. Its Appl. 491 (2018) 1001–1013.
10.
go back to reference W. Zhong, L. Wang, Basic theory of initial value problems of conformable fractional differential equations. Adv. Difference Eqn. (2018) 321:14. W. Zhong, L. Wang, Basic theory of initial value problems of conformable fractional differential equations. Adv. Difference Eqn. (2018) 321:14.
Metadata
Title
Uniqueness Functions to Conformable Differential Inclusions
Authors
Tzanko Donchev
Jamil Abbas
Iveta Nikolova
Stanislava Stoilova
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_20

Premium Partner