Skip to main content
Top

2025 | OriginalPaper | Chapter

UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction

Authors : Lan Feng, Mohammadhossein Bahari, Kaouther Messaoud Ben Amor, Éloi Zablocki, Matthieu Cord, Alexandre Alahi

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Vehicle trajectory prediction has increasingly relied on data-driven solutions, but their ability to scale to different data domains and the impact of larger dataset sizes on their generalization remain under-explored. While these questions can be studied by employing multiple datasets, it is challenging due to several discrepancies, e.g., in data formats, map resolution, and semantic annotation types. To address these challenges, we introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria, presenting new opportunities for the vehicle trajectory prediction field. In particular, using UniTraj, we conduct extensive experiments and find that model performance significantly drops when transferred to other datasets. However, enlarging data size and diversity can substantially improve performance, leading to a new state-of-the-art result for the nuScenes dataset. We provide insights into dataset characteristics to explain these findings. The code can be found here: https://​github.​com/​vita-epfl/​UniTraj.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Amirian, J., Zhang, B., Castro, F.V., Baldelomar, J.J., Hayet, J.B., Pettré, J.: OpenTraj: assessing prediction complexity in human trajectories datasets. In: Proceedings of the Asian Conference on Computer Vision (2020) Amirian, J., Zhang, B., Castro, F.V., Baldelomar, J.J., Hayet, J.B., Pettré, J.: OpenTraj: assessing prediction complexity in human trajectories datasets. In: Proceedings of the Asian Conference on Computer Vision (2020)
2.
go back to reference Bahari, M., Nejjar, I., Alahi, A.: Injecting knowledge in data-driven vehicle trajectory predictors. Transp. Res. Part C: Emerg. Technol. 128, 103010 (2021)CrossRef Bahari, M., Nejjar, I., Alahi, A.: Injecting knowledge in data-driven vehicle trajectory predictors. Transp. Res. Part C: Emerg. Technol. 128, 103010 (2021)CrossRef
3.
go back to reference Bahari, M., et al.: Vehicle trajectory prediction works, but not everywhere. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17123–17133 (2022) Bahari, M., et al.: Vehicle trajectory prediction works, but not everywhere. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17123–17133 (2022)
4.
go back to reference Ben-Younes, H., Zablocki, É., Chen, M., Pérez, P., Cord, M.: Raising context awareness in motion forecasting. In: CVPRW, pp. 4408–4417. IEEE (2022) Ben-Younes, H., Zablocki, É., Chen, M., Pérez, P., Cord, M.: Raising context awareness in motion forecasting. In: CVPRW, pp. 4408–4417. IEEE (2022)
5.
go back to reference Bhattacharyya, P., Huang, C., Czarnecki, K.: SSL-lanes: self-supervised learning for motion forecasting in autonomous driving. In: Conference on Robot Learning, pp. 1793–1805. PMLR (2023) Bhattacharyya, P., Huang, C., Czarnecki, K.: SSL-lanes: self-supervised learning for motion forecasting in autonomous driving. In: Conference on Robot Learning, pp. 1793–1805. PMLR (2023)
6.
go back to reference Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The inD dataset: a drone dataset of naturalistic road user trajectories at German intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1929–1934. IEEE (2020) Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The inD dataset: a drone dataset of naturalistic road user trajectories at German intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1929–1934. IEEE (2020)
7.
go back to reference Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020) Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
8.
10.
go back to reference Chang, M.-F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) Chang, M.-F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
11.
go back to reference Chen, G., Li, J., Lu, J., Zhou, J.: Human trajectory prediction via counterfactual analysis. In: ICCV, pp. 9804–9813. IEEE (2021) Chen, G., Li, J., Lu, J., Zhou, J.: Human trajectory prediction via counterfactual analysis. In: ICCV, pp. 9804–9813. IEEE (2021)
12.
go back to reference Chen, J., Wang, Z., Wang, J., Cai, B.: Q-eanet: implicit social modeling for trajectory prediction via experience-anchored queries. IET Intell. Transp. Syst. (2023) Chen, J., Wang, Z., Wang, J., Cai, B.: Q-eanet: implicit social modeling for trajectory prediction via experience-anchored queries. IET Intell. Transp. Syst. (2023)
13.
go back to reference Coscia, P., Castaldo, F., Palmieri, F.A.N., Alahi, A., Savarese, S., Ballan, L.: Long-term path prediction in urban scenarios using circular distributions. J. Image Vis. Comput. 69, 81–91 (2018)CrossRef Coscia, P., Castaldo, F., Palmieri, F.A.N., Alahi, A., Savarese, S., Ballan, L.: Long-term path prediction in urban scenarios using circular distributions. J. Image Vis. Comput. 69, 81–91 (2018)CrossRef
14.
go back to reference Ettinger, S., et al.: Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9710–9719 (2021) Ettinger, S., et al.: Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9710–9719 (2021)
15.
go back to reference Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Uncertainty estimation for cross-dataset performance in trajectory prediction. In: IEEE International Conference on Robotics and Automation Workshop on Fresh Perspectives on the Future of Autonomous Driving (2022) Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Uncertainty estimation for cross-dataset performance in trajectory prediction. In: IEEE International Conference on Robotics and Automation Workshop on Fresh Perspectives on the Future of Autonomous Driving (2022)
16.
go back to reference Girgis, R., et al.: Latent variable sequential set transformers for joint multi-agent motion prediction. In: International Conference on Learning Representations (2022) Girgis, R., et al.: Latent variable sequential set transformers for joint multi-agent motion prediction. In: International Conference on Learning Representations (2022)
17.
go back to reference Houston, J., et al.: One thousand and one hours: self-driving motion prediction dataset. In: Conference on Robot Learning, pp. 409–418. PMLR (2021) Houston, J., et al.: One thousand and one hours: self-driving motion prediction dataset. In: Conference on Robot Learning, pp. 409–418. PMLR (2021)
18.
go back to reference Hsu, K.C., Leung, K., Chen, Y., Fisac, J.F., Pavone, M.: Interpretable trajectory prediction for autonomous vehicles viacounterfactual responsibility. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2023) Hsu, K.C., Leung, K., Chen, Y., Fisac, J.F., Pavone, M.: Interpretable trajectory prediction for autonomous vehicles viacounterfactual responsibility. In: IEEE/RSJ International Conference on Intelligent Robots & Systems (2023)
19.
go back to reference Ivanovic, B., Song, G., Gilitschenski, I., Pavone, M.: Trajdata: a unified interface to multiple human trajectory datasets. In: Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, New Orleans, USA (2023) Ivanovic, B., Song, G., Gilitschenski, I., Pavone, M.: Trajdata: a unified interface to multiple human trajectory datasets. In: Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, New Orleans, USA (2023)
20.
go back to reference Jiang, C., et al.: Motiondiffuser: controllable multi-agent motion prediction using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9644–9653 (2023) Jiang, C., et al.: Motiondiffuser: controllable multi-agent motion prediction using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9644–9653 (2023)
21.
go back to reference Kalman, R.E.: A new approach to linear filtering and prediction problems (1960) Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
23.
go back to reference Kothari, P., Kreiss, S., Alahi, A.: Human trajectory forecasting in crowds: a deep learning perspective. IEEE Trans. Intell. Transp. Syst. (2021) Kothari, P., Kreiss, S., Alahi, A.: Human trajectory forecasting in crowds: a deep learning perspective. IEEE Trans. Intell. Transp. Syst. (2021)
24.
go back to reference Kothari, P., Li, D., Liu, Y., Alahi, A.: Motion style transfer: modular low-rank adaptation for deep motion forecasting. In: CoRL. Proceedings of Machine Learning Research, vol. 205, pp. 774–784. PMLR (2022) Kothari, P., Li, D., Liu, Y., Alahi, A.: Motion style transfer: modular low-rank adaptation for deep motion forecasting. In: CoRL. Proceedings of Machine Learning Research, vol. 205, pp. 774–784. PMLR (2022)
25.
go back to reference Li, Q., et al.: Scenarionet: open-source platform for large-scale traffic scenario simulation and modeling. In: Advances in Neural Information Processing Systems (2023) Li, Q., et al.: Scenarionet: open-source platform for large-scale traffic scenario simulation and modeling. In: Advances in Neural Information Processing Systems (2023)
27.
go back to reference Liu, Y., Cadei, R., Schweizer, J., Bahmani, S., Alahi, A.: Towards robust and adaptive motion forecasting: a causal representation perspective. In: CVPR, pp. 17060–17071. IEEE (2022) Liu, Y., Cadei, R., Schweizer, J., Bahmani, S., Alahi, A.: Towards robust and adaptive motion forecasting: a causal representation perspective. In: CVPR, pp. 17060–17071. IEEE (2022)
28.
go back to reference Makansi, O., Çiçek, Ö., Marrakchi, Y., Brox, T.: On exposing the challenging long tail in future prediction of traffic actors. In: ICCV, pp. 13127–13137. IEEE (2021) Makansi, O., Çiçek, Ö., Marrakchi, Y., Brox, T.: On exposing the challenging long tail in future prediction of traffic actors. In: ICCV, pp. 13127–13137. IEEE (2021)
29.
go back to reference Malinin, A., et al.: Shifts: a dataset of real distributional shift across multiple large-scale tasks. arXiv preprint arXiv:2107.07455 (2021) Malinin, A., et al.: Shifts: a dataset of real distributional shift across multiple large-scale tasks. arXiv preprint arXiv:​2107.​07455 (2021)
30.
go back to reference Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Attention based vehicle trajectory prediction. IEEE Trans. Intell. Veh. 6(1), 175–185 (2021)CrossRef Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., Nashashibi, F.: Attention based vehicle trajectory prediction. IEEE Trans. Intell. Veh. 6(1), 175–185 (2021)CrossRef
31.
go back to reference Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer: motion forecasting via simple & efficient attention networks. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2980–2987. IEEE (2023) Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer: motion forecasting via simple & efficient attention networks. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2980–2987. IEEE (2023)
32.
go back to reference Pourkeshavarz, M., Chen, C., Rasouli, A.: Learn tarot with mentor: a meta-learned self-supervised approach for trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8384–8393 (2023) Pourkeshavarz, M., Chen, C., Rasouli, A.: Learn tarot with mentor: a meta-learned self-supervised approach for trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8384–8393 (2023)
33.
go back to reference Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory prediction in crowded scenes. In: European Conference on Computer Vision (ECCV), vol. 2, p. 5 (2016) Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory prediction in crowded scenes. In: European Conference on Computer Vision (ECCV), vol. 2, p. 5 (2016)
34.
go back to reference Rudenko, A., Palmieri, L., Huang, W., Lilienthal, A.J., Arras, K.O.: The atlas benchmark: an automated evaluation framework for human motion prediction. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 636–643. IEEE (2022) Rudenko, A., Palmieri, L., Huang, W., Lilienthal, A.J., Arras, K.O.: The atlas benchmark: an automated evaluation framework for human motion prediction. In: 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 636–643. IEEE (2022)
35.
go back to reference Saadatnejad, S., Bahari, M., Khorsandi, P., Saneian, M., Moosavi-Dezfooli, S.M., Alahi, A.: Are socially-aware trajectory prediction models really socially-aware? arXiv preprint arXiv:2108.10879 (2021) Saadatnejad, S., Bahari, M., Khorsandi, P., Saneian, M., Moosavi-Dezfooli, S.M., Alahi, A.: Are socially-aware trajectory prediction models really socially-aware? arXiv preprint arXiv:​2108.​10879 (2021)
36.
go back to reference Saadatnejad, S., et al.: Toward reliable human pose forecasting with uncertainty. IEEE Robot. Autom. Lett. 9(5), 4447–4454 (2024)CrossRef Saadatnejad, S., et al.: Toward reliable human pose forecasting with uncertainty. IEEE Robot. Autom. Lett. 9(5), 4447–4454 (2024)CrossRef
37.
go back to reference Sadeghian, A., Kosaraju, V., Gupta, A., Savarese, S., Alahi, A.: Towards a benchmark for human trajectory prediction. arXiv preprint, Trajnet (2018) Sadeghian, A., Kosaraju, V., Gupta, A., Savarese, S., Alahi, A.: Towards a benchmark for human trajectory prediction. arXiv preprint, Trajnet (2018)
38.
go back to reference Sarva, J., Wang, J., Tu, J., Xiong, Y., Manivasagam, S., Urtasun, R.: Adv3D: generating safety-critical 3D objects through closed-loop simulation. CoRR, abs/2311.01446 (2023) Sarva, J., Wang, J., Tu, J., Xiong, Y., Manivasagam, S., Urtasun, R.: Adv3D: generating safety-critical 3D objects through closed-loop simulation. CoRR, abs/2311.01446 (2023)
39.
go back to reference Schäfer, M., Zhao, K., Kummert, A.: Caspnet++: joint multi-agent motion prediction (2023) Schäfer, M., Zhao, K., Kummert, A.: Caspnet++: joint multi-agent motion prediction (2023)
40.
go back to reference Shao, W., Xu, Y., Li, J., Lv, C., Wang, W., Wang, H.: How does traffic environment quantitatively affect the autonomous driving prediction? IEEE Trans. Intell. Transp. Syst. (2023) Shao, W., Xu, Y., Li, J., Lv, C., Wang, W., Wang, H.: How does traffic environment quantitatively affect the autonomous driving prediction? IEEE Trans. Intell. Transp. Syst. (2023)
41.
42.
go back to reference Shi, S., Jiang, L., Dai, D., Schiele, B.: Motion transformer with global intention localization and local movement refinement. In: Advances in Neural Information Processing Systems, vol. 35, pp. 6531–6543 (2022) Shi, S., Jiang, L., Dai, D., Schiele, B.: Motion transformer with global intention localization and local movement refinement. In: Advances in Neural Information Processing Systems, vol. 35, pp. 6531–6543 (2022)
43.
go back to reference Varadarajan, B., et al.: Multipath++: efficient information fusion and trajectory aggregation for behavior prediction. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7814–7821. IEEE (2022) Varadarajan, B., et al.: Multipath++: efficient information fusion and trajectory aggregation for behavior prediction. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7814–7821. IEEE (2022)
44.
go back to reference Wang, Y., Zhang, P., Bai, L., Xue, J.: FEND: a future enhanced distribution-aware contrastive learning framework for long-tail trajectory prediction. In: CVPR, pp. 1400–1409. IEEE (2023) Wang, Y., Zhang, P., Bai, L., Xue, J.: FEND: a future enhanced distribution-aware contrastive learning framework for long-tail trajectory prediction. In: CVPR, pp. 1400–1409. IEEE (2023)
45.
go back to reference Weng, X., Ivanovic, B., Kitani, K., Pavone, M.: Whose track is it anyway? Improving robustness to tracking errors with affinity-based trajectory prediction. In: CVPR, pp. 6563–6572. IEEE (2022) Weng, X., Ivanovic, B., Kitani, K., Pavone, M.: Whose track is it anyway? Improving robustness to tracking errors with affinity-based trajectory prediction. In: CVPR, pp. 6563–6572. IEEE (2022)
46.
go back to reference Wilson, B., et al. Argoverse 2: next generation datasets for self-driving perception and forecasting. arXiv preprint arXiv:2301.00493 (2023) Wilson, B., et al. Argoverse 2: next generation datasets for self-driving perception and forecasting. arXiv preprint arXiv:​2301.​00493 (2023)
47.
go back to reference Xu, Y., et al.: Towards motion forecasting with real-world perception inputs: are end-to-end approaches competitive? In: ICRA (2024) Xu, Y., et al.: Towards motion forecasting with real-world perception inputs: are end-to-end approaches competitive? In: ICRA (2024)
48.
go back to reference Yao, Z., Li, X., Lang, B., Chuah, M.C.: Goal-LBP: goal-based local behavior guided trajectory prediction for autonomous driving. IEEE Trans. Intell. Transp. Syst. 1–10 (2023) Yao, Z., Li, X., Lang, B., Chuah, M.C.: Goal-LBP: goal-based local behavior guided trajectory prediction for autonomous driving. IEEE Trans. Intell. Transp. Syst. 1–10 (2023)
49.
go back to reference Ye, L., Zhou, Z., Wang, J.: Improving the generalizability of trajectory prediction models with frenet-based domain normalization. In: IEEE International Conference on Robotics and Automation (ICRA) (2023) Ye, L., Zhou, Z., Wang, J.: Improving the generalizability of trajectory prediction models with frenet-based domain normalization. In: IEEE International Conference on Robotics and Automation (ICRA) (2023)
50.
go back to reference Zhan, W., et al.: Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:1910.03088 (2019) Zhan, W., et al.: Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:​1910.​03088 (2019)
51.
go back to reference Zhang, P., Bai, L., Xue, J., Fang, J., Zheng, N., Ouyang, W.: Trajectory forecasting from detection with uncertainty-aware motion encoding. CoRR, abs/2202.01478 (2022) Zhang, P., Bai, L., Xue, J., Fang, J., Zheng, N., Ouyang, W.: Trajectory forecasting from detection with uncertainty-aware motion encoding. CoRR, abs/2202.01478 (2022)
52.
go back to reference Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7571–7580 (2022) Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7571–7580 (2022)
53.
go back to reference Zhou, Z., Wang, J., Li, Y.-H., Huang, Y.-K.: Query-centric trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17863–17873 (2023) Zhou, Z., Wang, J., Li, Y.-H., Huang, Y.-K.: Query-centric trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17863–17873 (2023)
Metadata
Title
UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction
Authors
Lan Feng
Mohammadhossein Bahari
Kaouther Messaoud Ben Amor
Éloi Zablocki
Matthieu Cord
Alexandre Alahi
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_7

Premium Partner