Universal Measure for Medical Image Quality Evaluation Based on Gradient Approach | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Universal Measure for Medical Image Quality Evaluation Based on Gradient Approach

Authors : Marzena Bielecka, Andrzej Bielecki, Rafał Obuchowicz, Adam Piórkowski

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

In this paper, a new universal measure of medical images quality is proposed. The measure is based on the analysis of the image by using gradient methods. The number of isolated peaks in the examined image, as a function of the threshold value, is the basis of the assessment of the image quality. It turns out that for higher quality images the curvature of the graph of the said function has a higher value for lower threshold values. On the basis of the observed property, a new method of no-reference image quality assessment has been created. The experimental verification confirmed the method efficiency. The correlation between the arrangement depending on the image quality done by an expert and by using the proposed method is equal to 0.74. This means that the proposed method gives a correlation of higher than the best methods described in the literature. The proposed measure is useful to maximize the image quality while minimizing the time of medical examination.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Bielecka, M.: Syntactic-geometric-fuzzy hierarchical classifier of contours with application to analysis of bone contours in X-ray images. Appl. Soft Comput. 69, 368–380 (2018) CrossRef Bielecka, M.: Syntactic-geometric-fuzzy hierarchical classifier of contours with application to analysis of bone contours in X-ray images. Appl. Soft Comput. 69, 368–380 (2018) CrossRef
4.
go back to reference Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. LNAI 9692, 531–540 (2016) Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. LNAI 9692, 531–540 (2016)
5.
go back to reference Bielecka, M., Obuchowicz, R., Korkosz, M.: The shape language in application to the diagnosis of cervical vertebrae pathology. PLoS ONE 13(10), 17 (2018). Article number e0204546 CrossRef Bielecka, M., Obuchowicz, R., Korkosz, M.: The shape language in application to the diagnosis of cervical vertebrae pathology. PLoS ONE 13(10), 17 (2018). Article number e0204546 CrossRef
6.
go back to reference Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Sig. Process. 7 (2013). Article ID 356291 Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Sig. Process. 7 (2013). Article ID 356291
7.
go back to reference Chow, L.S., Paramesran, R.: Review of medical image quality assessment. Biomed. Signal Process. Control 27, 145–154 (2016) CrossRef Chow, L.S., Paramesran, R.: Review of medical image quality assessment. Biomed. Signal Process. Control 27, 145–154 (2016) CrossRef
8.
go back to reference Chow, L.S., Rajagopal, H.: Modified-BRISQUE as no reference image quality assessment for structural MR images. Magn. Reson. Imaging 43, 74–87 (2017) CrossRef Chow, L.S., Rajagopal, H.: Modified-BRISQUE as no reference image quality assessment for structural MR images. Magn. Reson. Imaging 43, 74–87 (2017) CrossRef
9.
go back to reference Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36, 55–72 (2012) CrossRef Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36, 55–72 (2012) CrossRef
10.
go back to reference Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26(2), 375–385 (2007) CrossRef Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26(2), 375–385 (2007) CrossRef
11.
go back to reference Elojeimy, S., Tipnis, S., Huda, W.: Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDIVOL. Radiat. Prot. Dosim. 141(1), 43–49 (2010) CrossRef Elojeimy, S., Tipnis, S., Huda, W.: Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDIVOL. Radiat. Prot. Dosim. 141(1), 43–49 (2010) CrossRef
13.
go back to reference Flasiński, M.: Syntactic Pattern Recognition. World Scientific, Singapore (2019) CrossRef Flasiński, M.: Syntactic Pattern Recognition. World Scientific, Singapore (2019) CrossRef
14.
go back to reference Gedamu, E.L., Collins, D., Arnold, D.L.: Automated quality control of brain MR images. J. Magn. Reson. Imaging 28(2), 308–319 (2008) CrossRef Gedamu, E.L., Collins, D., Arnold, D.L.: Automated quality control of brain MR images. J. Magn. Reson. Imaging 28(2), 308–319 (2008) CrossRef
15.
go back to reference Geissler, A., Gartus, A., Foki, T., Tahamtan, A.R., Beisteiner, R., Barth, M.: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J. Magn. Reson. Imaging 25(6), 1263–1270 (2007) CrossRef Geissler, A., Gartus, A., Foki, T., Tahamtan, A.R., Beisteiner, R., Barth, M.: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J. Magn. Reson. Imaging 25(6), 1263–1270 (2007) CrossRef
16.
go back to reference Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010) Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)
17.
go back to reference Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008) CrossRef Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008) CrossRef
18.
go back to reference Huda, W., Abrahams, R.B.: Radiographic techniques, contrast, and noise in X-ray imaging. Am. J. Roentgenol. 204(2), 126–131 (2015) CrossRef Huda, W., Abrahams, R.B.: Radiographic techniques, contrast, and noise in X-ray imaging. Am. J. Roentgenol. 204(2), 126–131 (2015) CrossRef
19.
go back to reference Jang, J., Bang, K., Jang, H., Hwang, D.: Alzheimer’s disease neuroimaging initiative quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn. Reson. Med. 80(3), 914–924 (2018) CrossRef Jang, J., Bang, K., Jang, H., Hwang, D.: Alzheimer’s disease neuroimaging initiative quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn. Reson. Med. 80(3), 914–924 (2018) CrossRef
20.
go back to reference Ludlow, J.B., Ivanovic, M.: Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 106–114 (2008) CrossRef Ludlow, J.B., Ivanovic, M.: Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 106–114 (2008) CrossRef
21.
go back to reference Mafi, M., Martin, H., Adjouadi, M.: High impulse noise intensity removal in MRI images. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6 (2017) Mafi, M., Martin, H., Adjouadi, M.: High impulse noise intensity removal in MRI images. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6 (2017)
22.
go back to reference Miao, J., Huang, F., Narayan, S., Wilson, D.L.: A new perceptual difference model for diagnostically relevant quantitative image quality evaluation: a preliminary study. Magn. Reson. Imaging 31, 596–603 (2013) CrossRef Miao, J., Huang, F., Narayan, S., Wilson, D.L.: A new perceptual difference model for diagnostically relevant quantitative image quality evaluation: a preliminary study. Magn. Reson. Imaging 31, 596–603 (2013) CrossRef
23.
go back to reference Obuchowicz, R., Oszust, M., Bielecka, M., Bielecki, A., Piórkowski, A.: Magnetic resonance image quality assessment by using non-maximum suppression and entropy analysis. Entropy 22(2) (2020). Article number e22020220 Obuchowicz, R., Oszust, M., Bielecka, M., Bielecki, A., Piórkowski, A.: Magnetic resonance image quality assessment by using non-maximum suppression and entropy analysis. Entropy 22(2) (2020). Article number e22020220
24.
go back to reference Obuchowicz, R., Piórkowski, A., Urbanik, A., Strzelecki, M.: Influence of acquisition time on MR image quality estimated with nonparametric measures based on texture features. Biomed Res. Int. 10 (2019). Article ID 3706581 Obuchowicz, R., Piórkowski, A., Urbanik, A., Strzelecki, M.: Influence of acquisition time on MR image quality estimated with nonparametric measures based on texture features. Biomed Res. Int. 10 (2019). Article ID 3706581
25.
go back to reference Ogiela, M.: Languages of shape feature description and syntactic methods for recognition of morphological changes of organs in analysis of selected X-ray images. In: Proceedings of Medical Imaging 1998, vol. 3338, pp. 1295–1305 (1998) Ogiela, M.: Languages of shape feature description and syntactic methods for recognition of morphological changes of organs in analysis of selected X-ray images. In: Proceedings of Medical Imaging 1998, vol. 3338, pp. 1295–1305 (1998)
26.
go back to reference Ogiela, M., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer-algorithms for analysing the morphologic shape of pancreatic ducts for early diagnosis of changes in the pancreas. IEEE Eng. Med. Biol. Mag. 19, 94–105 (2000) CrossRef Ogiela, M., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer-algorithms for analysing the morphologic shape of pancreatic ducts for early diagnosis of changes in the pancreas. IEEE Eng. Med. Biol. Mag. 19, 94–105 (2000) CrossRef
27.
go back to reference Ogiela, M., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006) CrossRef Ogiela, M., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006) CrossRef
28.
go back to reference Okarma, K., Fastowicz, J.: No-reference quality assessment of 3D prints based on the GLCM analysis. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793. IEEE (2016) Okarma, K., Fastowicz, J.: No-reference quality assessment of 3D prints based on the GLCM analysis. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793. IEEE (2016)
29.
go back to reference Osadebey, M., Pedersen, M., Arnold, D., Wendel-Mitoraj, K.: Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images. J. Med. Imaging 4(2), 502–504 (2017) CrossRef Osadebey, M., Pedersen, M., Arnold, D., Wendel-Mitoraj, K.: Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images. J. Med. Imaging 4(2), 502–504 (2017) CrossRef
30.
go back to reference Oszust, M.: No-reference image quality assessment using image statistics and robust feature descriptors. IEEE Signal Process. Lett. 11(24), 1656–1660 (2017) CrossRef Oszust, M.: No-reference image quality assessment using image statistics and robust feature descriptors. IEEE Signal Process. Lett. 11(24), 1656–1660 (2017) CrossRef
31.
go back to reference Oszust, M.: No-reference image quality assessment with local features and high-order derivatives. J. Vis. Commun. Image Represent. 56, 15–26 (2018) CrossRef Oszust, M.: No-reference image quality assessment with local features and high-order derivatives. J. Vis. Commun. Image Represent. 56, 15–26 (2018) CrossRef
32.
go back to reference Schulze, D., Heiland, M., Thurmann, H., Adam, G.: Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac. Radiol. 33(2), 83–86 (2004) CrossRef Schulze, D., Heiland, M., Thurmann, H., Adam, G.: Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac. Radiol. 33(2), 83–86 (2004) CrossRef
33.
go back to reference Sinha, N., Ramakrishnan, A.G.: Quality assessment in magnetic resonance images. Crit. Rev. Biomed. Eng. 38(2), 127–141 (2010) CrossRef Sinha, N., Ramakrishnan, A.G.: Quality assessment in magnetic resonance images. Crit. Rev. Biomed. Eng. 38(2), 127–141 (2010) CrossRef
34.
go back to reference Woodard, J.P., Carley-Spencer, M.P.: No-reference image quality metrics for structural MRI. Neuroinformatics 4(3), 243–262 (2006) CrossRef Woodard, J.P., Carley-Spencer, M.P.: No-reference image quality metrics for structural MRI. Neuroinformatics 4(3), 243–262 (2006) CrossRef
Metadata
Title
Universal Measure for Medical Image Quality Evaluation Based on Gradient Approach
Authors
Marzena Bielecka
Andrzej Bielecki
Rafał Obuchowicz
Adam Piórkowski
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_30