Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

Unmanned Aircraft Systems and the Nordic Challenges

Authors : Vadim Kramar, Juha Röning, Juha Erkkilä, Henry Hinkula, Tanja Kolli, Anssi Rauhala

Published in: New Developments and Environmental Applications of Drones

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The European Union (EU) regulations regarding the unmanned aircraft system (UAS) that came into force in 2021 emphasise technological and operational safety. Those regulations have been developed on the common rules in the field of civil aviation and establishing a European Union Aviation Safety Agency (EASA). The implementation of the regulations and compliant UAS operator activities are still the ground of the future. Therefore, it is essential to systematically gather information about all the factors affecting UAS operations in a safe and meaningful manner. This book chapter introduces the Nordic as well as generic challenges for UAS operations. The challenges can be divided into two main categories: technological and operational. Based on the extensive literature review and authors’ practical experience, both types of challenges are grouped by relevance topics. For example, the weather-related phenomena challenges overlap in both technological and operational categories but still can be mitigated differently. Technological challenges are usually mitigated by UAS design and human-computer interactions, while operational challenges may be mitigated with legislation and organisational activities and personal UAS operator qualities. Finally, the needs for further research on the challenges affecting safe UAS operations are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vainio, M., Ruotsalainen, L., Banda, O.V., Röning, J., Laitinen, J., Boutellier, J., Koskinen, S., Peussa, P., Shamsuzzoha, A., Toroody, A.B., Kramar, V., Visala, A., Ghabcheloo, R., Huhtala, K., & Alagirisamy, R. (2020). Safety challenges of autonomous mobile systems in dynamic unstructured environments: Situational awareness, decision-making, autonomous navigation, & human-machine interface. RAAS Rethinking Autonomy And Safety Situational Awareness, Autonomous Navigation and Intelligent Control Research Task Force. Vainio, M., Ruotsalainen, L., Banda, O.V., Röning, J., Laitinen, J., Boutellier, J., Koskinen, S., Peussa, P., Shamsuzzoha, A., Toroody, A.B., Kramar, V., Visala, A., Ghabcheloo, R., Huhtala, K., & Alagirisamy, R. (2020). Safety challenges of autonomous mobile systems in dynamic unstructured environments: Situational awareness, decision-making, autonomous navigation, & human-machine interface. RAAS Rethinking Autonomy And Safety Situational Awareness, Autonomous Navigation and Intelligent Control Research Task Force.
2.
go back to reference European Commission. (2019). Commission delegated regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems. European Comission. European Commission. (2019). Commission delegated regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems. European Comission.
3.
go back to reference European Commission. (2019). Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. European Commission. European Commission. (2019). Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. European Commission.
4.
go back to reference Rhee, D. S., Do Kim, Y., Kang, B., & Kim, D. (2017). Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE Journal of Civil Engineering, 22, 588–602.CrossRef Rhee, D. S., Do Kim, Y., Kang, B., & Kim, D. (2017). Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE Journal of Civil Engineering, 22, 588–602.CrossRef
5.
go back to reference Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review, 45, 239–252.CrossRef Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review, 45, 239–252.CrossRef
8.
go back to reference Alfredsen, K. (2018). Brief communication: Mapping river ice using drones and structure from motion. The Cryosphere, 12, 627–633.CrossRef Alfredsen, K. (2018). Brief communication: Mapping river ice using drones and structure from motion. The Cryosphere, 12, 627–633.CrossRef
10.
go back to reference Niedzielski, T. (2018). Automated snow extent mapping based on orthophoto images from unmanned aerial vehicles. Pure and Applied Geophysics, 175, 1–18.CrossRef Niedzielski, T. (2018). Automated snow extent mapping based on orthophoto images from unmanned aerial vehicles. Pure and Applied Geophysics, 175, 1–18.CrossRef
12.
go back to reference Villa, T. (2016). An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16, 1072.CrossRef Villa, T. (2016). An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16, 1072.CrossRef
14.
go back to reference Houston, A. L. (2012). The collaborative Colorado-Nebraska unmanned aircraft system experiment. Bulletin of the American Meteorological Society, 93, 6.CrossRef Houston, A. L. (2012). The collaborative Colorado-Nebraska unmanned aircraft system experiment. Bulletin of the American Meteorological Society, 93, 6.CrossRef
15.
go back to reference Jonassen, M. (2015). Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic Sea ice in winter. Polar Research, 34, 25651.CrossRef Jonassen, M. (2015). Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic Sea ice in winter. Polar Research, 34, 25651.CrossRef
16.
go back to reference Mayer, S. (2012). Atmospheric profiling with the UAS SUMO: A new perspective for the evaluation of fine-scale atmospheric models. Meteorology and Atmospheric Physics, 116, 15–26.CrossRef Mayer, S. (2012). Atmospheric profiling with the UAS SUMO: A new perspective for the evaluation of fine-scale atmospheric models. Meteorology and Atmospheric Physics, 116, 15–26.CrossRef
17.
go back to reference Aicardi, I., Nyapwere, N., Nex, F., Gerke, M., Lingua, A., & Koeva, M. (2016). Co-registration of multitemporal uav image datasets for monitoring applications: A new approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, xli-b1, 757–763.CrossRef Aicardi, I., Nyapwere, N., Nex, F., Gerke, M., Lingua, A., & Koeva, M. (2016). Co-registration of multitemporal uav image datasets for monitoring applications: A new approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, xli-b1, 757–763.CrossRef
18.
go back to reference Schaub, G. (2015). But who’s flying the plane? Integrating UAVs into the Canadian and Danish armed forces. International Journal, 70, 250–267.CrossRef Schaub, G. (2015). But who’s flying the plane? Integrating UAVs into the Canadian and Danish armed forces. International Journal, 70, 250–267.CrossRef
19.
go back to reference Halliday, W. D. (2018). Tourist vessel traffic in important whale areas in the western Canadian Arctic: Risks and possible management solutions. Marine Policy, 97, 72–81.CrossRef Halliday, W. D. (2018). Tourist vessel traffic in important whale areas in the western Canadian Arctic: Risks and possible management solutions. Marine Policy, 97, 72–81.CrossRef
20.
go back to reference Wynsberghe, A., Soesilo, D., Kristen, T., & Sharkey, N. (2018). Drones in the service of society. A Foundation for Responsible Robotics. Wynsberghe, A., Soesilo, D., Kristen, T., & Sharkey, N. (2018). Drones in the service of society. A Foundation for Responsible Robotics.
26.
go back to reference EHANG Announces $10 million series a round led by GGV Capital to take personal drones mainstream. PR Newswire 2014. EHANG Announces $10 million series a round led by GGV Capital to take personal drones mainstream. PR Newswire 2014.
28.
go back to reference Autonomous Systems – Northrop Grumman. https://www.northropgrumman.com/Capabilities/AutonomousSystems/Pages/default.aspx?utm_source=PrintAd&utm_medium =Redirect&utm_campaign=AutonomousSystems_Redirect#Technology. Last accessed 2018/08/21. Autonomous Systems – Northrop Grumman. https://​www.​northropgrumman.​com/​Capabilities/​AutonomousSystem​s/​Pages/​default.​aspx?​utm_​source=​PrintAd&​utm_​medium =Redirect&utm_campaign=AutonomousSystems_Redirect#Technology. Last accessed 2018/08/21.
29.
go back to reference Kramar, V., & Määttä, H. (2018). UAV Arctic challenges and the first step: Printed temperature sensor. In Proceedings of the 23rd conference of FRUCT association (pp. 483–490). Kramar, V., & Määttä, H. (2018). UAV Arctic challenges and the first step: Printed temperature sensor. In Proceedings of the 23rd conference of FRUCT association (pp. 483–490).
30.
go back to reference Kramar, V. (2019). UAS (drone) Arctic challenges – Next steps. In Proceedings of the 25th conference of FRUCT association (pp. 507–514). Kramar, V. (2019). UAS (drone) Arctic challenges – Next steps. In Proceedings of the 25th conference of FRUCT association (pp. 507–514).
34.
go back to reference Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. Mech. Eng., 1–32. Mueller, T. J. (1999). Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. Mech. Eng., 1–32.
36.
go back to reference Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E., & Brass, J. A. (2004). Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44, 49–61. https://doi.org/10.1016/j.compag.2004.02.006.CrossRef Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E., & Brass, J. A. (2004). Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44, 49–61. https://​doi.​org/​10.​1016/​j.​compag.​2004.​02.​006.CrossRef
41.
go back to reference Khofiyah, N. A., Sutopo, W., & Nugroho, B. D. A. (2019). Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019, 3591–3601. Khofiyah, N. A., Sutopo, W., & Nugroho, B. D. A. (2019). Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019, 3591–3601.
42.
go back to reference Runge, H., Rack, W., & Hepperle, M. (2007). A solar-powered HALE-UAV for Arctic research. In: 1st CEAS European Air and Space Conference. Runge, H., Rack, W., & Hepperle, M. (2007). A solar-powered HALE-UAV for Arctic research. In: 1st CEAS European Air and Space Conference.
45.
go back to reference Hiserote, R., & Harmon, F. (2010). Analysis of hybrid-electric propulsion system designs for small unmanned aircraft systems. In 8th annual international energy conversion engineering conference. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-6687.CrossRef Hiserote, R., & Harmon, F. (2010). Analysis of hybrid-electric propulsion system designs for small unmanned aircraft systems. In 8th annual international energy conversion engineering conference. Reston, VA: American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2010-6687.CrossRef
47.
go back to reference Ader, M., & Axelsson, D. (2017). Drones in arctic environments. ITM. Ader, M., & Axelsson, D. (2017). Drones in arctic environments. ITM.
56.
go back to reference Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. https: //doi.org/10.1016/j.adhoc.2017.09.001.CrossRef Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. https: //doi.org/10.1016/j.adhoc.2017.09.001.CrossRef
62.
go back to reference Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2018). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. Journal of Intelligent and Robotics Systems: Theory and Applications, 95, 1–27. https://doi.org/10.1007/s10846-018-0898-1.CrossRef Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2018). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. Journal of Intelligent and Robotics Systems: Theory and Applications, 95, 1–27. https://​doi.​org/​10.​1007/​s10846-018-0898-1.CrossRef
65.
67.
go back to reference Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2018). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. arXiv, 21, 2334–2360. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2018). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. arXiv, 21, 2334–2360.
70.
go back to reference Lykou, G., Moustakas, D., & Gritzalis, D. (2020). Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Mdpi. Sensors. Lykou, G., Moustakas, D., & Gritzalis, D. (2020). Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Mdpi. Sensors.
71.
go back to reference Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., & Longhi, S. (2014). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. In 2014 international conference on unmanned aircraft systems ICUAS 2014 – Conference proceedings (pp. 374–382). https://doi.org/10.1109/ICUAS.2014.6842276.CrossRef Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., & Longhi, S. (2014). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. In 2014 international conference on unmanned aircraft systems ICUAS 2014 – Conference proceedings (pp. 374–382). https://​doi.​org/​10.​1109/​ICUAS.​2014.​6842276.CrossRef
73.
go back to reference Ranquist, E. A., & Matthias Steiner, B. A. (2016). Exploring the range of weather impacts on UAS operations. In 18th conference on aviatation range and aerospace meteorology (Vol. 11). Ranquist, E. A., & Matthias Steiner, B. A. (2016). Exploring the range of weather impacts on UAS operations. In 18th conference on aviatation range and aerospace meteorology (Vol. 11).
75.
go back to reference Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., Myers-Smith, I. H., Varela, M. R., & Anderson, K. (2018). Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation, 4, 7–19. https://doi.org/10.1002/rse2.58.CrossRef Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., Myers-Smith, I. H., Varela, M. R., & Anderson, K. (2018). Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation, 4, 7–19. https://​doi.​org/​10.​1002/​rse2.​58.CrossRef
78.
go back to reference Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H. y., Thobois, L., Dimri, A. P., Dietz, S. J., França, G. B., Almeida, M. V., & Neto, F. L. A. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176, 1869–1921. https://doi.org/10.1007/s00024-019-02168-6.CrossRef Gultepe, I., Sharman, R., Williams, P. D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H. y., Thobois, L., Dimri, A. P., Dietz, S. J., França, G. B., Almeida, M. V., & Neto, F. L. A. (2019). A review of high impact weather for aviation meteorology. Pure and Applied Geophysics, 176, 1869–1921. https://​doi.​org/​10.​1007/​s00024-019-02168-6.CrossRef
79.
go back to reference Gohardani, O., Elola, M. C., & Elizetxea, C. (2014). Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Science, 70, 42–68. https: //doi.org/10.1016/j.paerosci.2014.05.002.CrossRef Gohardani, O., Elola, M. C., & Elizetxea, C. (2014). Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Science, 70, 42–68. https: //doi.org/10.1016/j.paerosci.2014.05.002.CrossRef
82.
go back to reference Lawson, C. P. (2006). Electrically powered ice protection systems for MALE UAVs – Requirements and integration challenges. In ICAS-secretariat – 25th congress of the International Council of the Aeronautical Sciences 2006 (pp. 3565–3573). Lawson, C. P. (2006). Electrically powered ice protection systems for MALE UAVs – Requirements and integration challenges. In ICAS-secretariat – 25th congress of the International Council of the Aeronautical Sciences 2006 (pp. 3565–3573).
85.
86.
go back to reference Paredes, J. A., Saito, C., Abarca, M., & Cuellar, F. (2017). Study of effects of high-altitude environments on multicopter and fixed-wing UAVs’ energy consumption and flight time. In IEEE international conference on automation science and engineering 2017-August (pp. 1645–1650). https://doi.org/10.1109/COASE.2017.8256340.CrossRef Paredes, J. A., Saito, C., Abarca, M., & Cuellar, F. (2017). Study of effects of high-altitude environments on multicopter and fixed-wing UAVs’ energy consumption and flight time. In IEEE international conference on automation science and engineering 2017-August (pp. 1645–1650). https://​doi.​org/​10.​1109/​COASE.​2017.​8256340.CrossRef
87.
go back to reference Tafreshi, M., Shafieenejad, I., & Nikkhah, A. A. (2014). Open-loop and closed-loop optimal guidance policy for Samarai aerial vehicle with novel algorithm to consider wind effects. International Journal of Engineering and Techincal Research, 2, 185–191. Tafreshi, M., Shafieenejad, I., & Nikkhah, A. A. (2014). Open-loop and closed-loop optimal guidance policy for Samarai aerial vehicle with novel algorithm to consider wind effects. International Journal of Engineering and Techincal Research, 2, 185–191.
89.
go back to reference Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., & Lampert, A. (2015). ALADINA – An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 8, 1627–1639. https://doi.org/10.5194/amt-8-1627-2015.CrossRef Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., & Lampert, A. (2015). ALADINA – An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques, 8, 1627–1639. https://​doi.​org/​10.​5194/​amt-8-1627-2015.CrossRef
90.
go back to reference Rüdiger, J., Tirpitz, J. L., Maarten De Moor, J., Bobrowski, N., Gutmann, A., Liuzzo, M., Ibarra, M., & Hoffmann, T. (2018). Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: Examples from Masaya, Turrialba and Stromboli volcanoes. Atmospheric Measurement Techniques, 11, 2441–2457. https://doi.org/10.5194/amt-11-2441-2018.CrossRef Rüdiger, J., Tirpitz, J. L., Maarten De Moor, J., Bobrowski, N., Gutmann, A., Liuzzo, M., Ibarra, M., & Hoffmann, T. (2018). Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: Examples from Masaya, Turrialba and Stromboli volcanoes. Atmospheric Measurement Techniques, 11, 2441–2457. https://​doi.​org/​10.​5194/​amt-11-2441-2018.CrossRef
98.
go back to reference Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., & Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10, 1. https://doi.org/10.3390/rs10040641.CrossRef Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. B., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., & Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10, 1. https://​doi.​org/​10.​3390/​rs10040641.CrossRef
99.
go back to reference Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12. https://doi.org/10.3390/rs12061001. Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12. https://​doi.​org/​10.​3390/​rs12061001.
102.
go back to reference McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Gao, H., & Wood, E. F. (2017). The future of earth observation in hydrology. Hydrology and Earth System Sciences, 21, 3879–3914. https://doi.org/10.5194/hess-21-3879-2017.CrossRef McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Gao, H., & Wood, E. F. (2017). The future of earth observation in hydrology. Hydrology and Earth System Sciences, 21, 3879–3914. https://​doi.​org/​10.​5194/​hess-21-3879-2017.CrossRef
104.
go back to reference Kelly, J., Kljun, N., Olsson, P. O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., & Eklundh, L. (2019). Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sensing, 11, 567. https://doi.org/10.3390/rs11050567.CrossRef Kelly, J., Kljun, N., Olsson, P. O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., & Eklundh, L. (2019). Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sensing, 11, 567. https://​doi.​org/​10.​3390/​rs11050567.CrossRef
106.
go back to reference INTERACT: Drones Pocket Guide. (2017). INTERACT drone workshop svalbard. INTERACT: Drones Pocket Guide. (2017). INTERACT drone workshop svalbard.
107.
go back to reference Storvold, R., Sweatte, C., Ruel, P., Wuennenberg, M., Tarr, K., Raustein, M., Hillesøy, T., Lundgren, T., & Sumich, M. (2015). Arctic science RPAS operator’s handbook. AMAP. Storvold, R., Sweatte, C., Ruel, P., Wuennenberg, M., Tarr, K., Raustein, M., Hillesøy, T., Lundgren, T., & Sumich, M. (2015). Arctic science RPAS operator’s handbook. AMAP.
109.
go back to reference Petroleka, M., Sano, Y., Shah, K., Marshall, R., Haines, C., Weber, K., Richards, M., Beckenstein, J., Menonna, F., Thillien, D., Martin, C., Glendinning, T., Richards, E., Grant, J., Shutt, M., Brenden, D., Earnshaw, D., Chia, S., Nix, P., Moss, J., Taylor, R., & Oliva-Velez, D. (2018). Towards 2050: Megatrends in industry, politics and the global economy 2018 edition. BMI Research. Petroleka, M., Sano, Y., Shah, K., Marshall, R., Haines, C., Weber, K., Richards, M., Beckenstein, J., Menonna, F., Thillien, D., Martin, C., Glendinning, T., Richards, E., Grant, J., Shutt, M., Brenden, D., Earnshaw, D., Chia, S., Nix, P., Moss, J., Taylor, R., & Oliva-Velez, D. (2018). Towards 2050: Megatrends in industry, politics and the global economy 2018 edition. BMI Research.
119.
go back to reference Johnson, M., Jung, J., Rios, J., Mercer, J., Homola, J., Prevot, T., Mulfinger, D., & Kopardekar, P. (2017). Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations. In 12th USA/Europe Air Traffic Management Research and Development Seminar. Johnson, M., Jung, J., Rios, J., Mercer, J., Homola, J., Prevot, T., Mulfinger, D., & Kopardekar, P. (2017). Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations. In 12th USA/Europe Air Traffic Management Research and Development Seminar.
120.
go back to reference Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson, J. E. (2016). Unmanned aircraft system traffic management (UTM) concept of operations. In 16th AIAA aviation technology, integration, and operations conference. AIAA Aviation. Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson, J. E. (2016). Unmanned aircraft system traffic management (UTM) concept of operations. In 16th AIAA aviation technology, integration, and operations conference. AIAA Aviation.
121.
go back to reference Ancel, E., Capristan, F. M., Foster, J. V., & Condottax, R. C. (2017). Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In 17th AIAA aviation technology, integration, and operations conference, 2017. AIAA. Ancel, E., Capristan, F. M., Foster, J. V., & Condottax, R. C. (2017). Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In 17th AIAA aviation technology, integration, and operations conference, 2017. AIAA.
123.
go back to reference Ivancic, W. D., Kerczewski, R. J., Murawski, R. W., Matheou, K., & Downey, A. N. (2019). Flying drones beyond visual line of sight using 4g LTE: Issues and concerns. In Integrated communications, navigation and surveillance conference 2019-April (pp. 1–13). IEEE. https: //doi.org/10.1109/ICNSURV.2019.8735246.CrossRef Ivancic, W. D., Kerczewski, R. J., Murawski, R. W., Matheou, K., & Downey, A. N. (2019). Flying drones beyond visual line of sight using 4g LTE: Issues and concerns. In Integrated communications, navigation and surveillance conference 2019-April (pp. 1–13). IEEE. https: //doi.org/10.1109/ICNSURV.2019.8735246.CrossRef
124.
125.
go back to reference Beverley, G. (2019). BVLoS and blockchain – Why distributed ledgers may be the key to unlocking widespread BVLoS operations. Consortiq. Beverley, G. (2019). BVLoS and blockchain – Why distributed ledgers may be the key to unlocking widespread BVLoS operations. Consortiq.
126.
go back to reference Claesson, A., Fredman, D., Svensson, L., Ringh, M., Hollenberg, J., Nordberg, P., Rosenqvist, M., Djarv, T., Österberg, S., Lennartsson, J., & Ban, Y. (2016). Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 1–9. https://doi.org/10.1186/s13049-016-0313-5.CrossRef Claesson, A., Fredman, D., Svensson, L., Ringh, M., Hollenberg, J., Nordberg, P., Rosenqvist, M., Djarv, T., Österberg, S., Lennartsson, J., & Ban, Y. (2016). Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 1–9. https://​doi.​org/​10.​1186/​s13049-016-0313-5.CrossRef
129.
go back to reference Sanfridsson, J., Sparrevik, J., Hollenberg, J., Nordberg, P., Djärv, T., Ringh, M., Svensson, L., Forsberg, S., Nord, A., Andersson-Hagiwara, M., & Claesson, A. (2019). Drone delivery of an automated external defibrillator – A mixed method simulation study of bystander experience. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, 1–9. https://doi.org/10.1186/s13049-019-0622-6.CrossRef Sanfridsson, J., Sparrevik, J., Hollenberg, J., Nordberg, P., Djärv, T., Ringh, M., Svensson, L., Forsberg, S., Nord, A., Andersson-Hagiwara, M., & Claesson, A. (2019). Drone delivery of an automated external defibrillator – A mixed method simulation study of bystander experience. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, 1–9. https://​doi.​org/​10.​1186/​s13049-019-0622-6.CrossRef
131.
go back to reference Tierney, M.T. (2016). Ethics on the fly: Toward a drone-specific code of conduct for law enforcement. Naval Postgraduate School. Tierney, M.T. (2016). Ethics on the fly: Toward a drone-specific code of conduct for law enforcement. Naval Postgraduate School.
138.
go back to reference Padró, J. C., Muñoz, F. J., Planas, J., & Pons, X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. https://doi.org/10.1016/j.jag.2018.10.018.CrossRef Padró, J. C., Muñoz, F. J., Planas, J., & Pons, X. (2019). Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. International Journal of Applied Earth Observation and Geoinformation, 75, 130–140. https://​doi.​org/​10.​1016/​j.​jag.​2018.​10.​018.CrossRef
139.
go back to reference Cho, Y. (2014). Lost in debate: The safety of domestic unmanned aircraft systems. Journal of Strategic Security, 7, 38–56.CrossRef Cho, Y. (2014). Lost in debate: The safety of domestic unmanned aircraft systems. Journal of Strategic Security, 7, 38–56.CrossRef
140.
go back to reference Sullivan-Nightengale, D. (2015). Unmanned aerial systems: Risks & opportunities in the workplace. Professional Safety, 60, 34–42. Sullivan-Nightengale, D. (2015). Unmanned aerial systems: Risks & opportunities in the workplace. Professional Safety, 60, 34–42.
141.
go back to reference Sanjab, A., Saad, W., & Başar, T. (2017). Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game. arXiv, 0–5. Sanjab, A., Saad, W., & Başar, T. (2017). Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game. arXiv, 0–5.
143.
go back to reference Hamilton, B.A. (2020). Updated with additional testing and analysis executive summary. Booz Allen for PrecisionHawk. Hamilton, B.A. (2020). Updated with additional testing and analysis executive summary. Booz Allen for PrecisionHawk.
144.
go back to reference Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization. arXiv, 16, 8052–8066. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization. arXiv, 16, 8052–8066.
146.
go back to reference European Union Aviation Safety Agency: Easy access rules for unmanned aircraft systems (Regulations (EU) 2019/947 and (EU) 2019/945) (2021) (pp. 1–292). European Union Aviation Safety Agency: Easy access rules for unmanned aircraft systems (Regulations (EU) 2019/947 and (EU) 2019/945) (2021) (pp. 1–292).
148.
go back to reference ASTM. (2018). New practice for general operations manual for professional operator of light Unmanned Aircraft Systems (UAS). ASTM International. ASTM. (2018). New practice for general operations manual for professional operator of light Unmanned Aircraft Systems (UAS). ASTM International.
149.
go back to reference JARUS. (2019). JARUS guidelines on Specific Operations Risk Assessment (SORA). Joint Authoritiesfor Rulemaking of Unmanned Systems. JARUS. (2019). JARUS guidelines on Specific Operations Risk Assessment (SORA). Joint Authoritiesfor Rulemaking of Unmanned Systems.
Metadata
Title
Unmanned Aircraft Systems and the Nordic Challenges
Authors
Vadim Kramar
Juha Röning
Juha Erkkilä
Henry Hinkula
Tanja Kolli
Anssi Rauhala
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-77860-6_1

Premium Partner