Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 2/2021

01-04-2021 | APPLICATION PROBLEMS

Unsafe Construction Behavior Classification Using Deep Convolutional Neural Network

Authors: P. D. Hung, N. T. Su

Published in: Pattern Recognition and Image Analysis | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the construction industry, about 80–90% of accidents are caused by the unsafe actions and behaviors of employees. Thus, behavior management plays a key role in enhancing safety. In particular, behavior observation is the most critical element for modifying workers’ behavior in a safe manner. However, there is a lack of practical methods to measure workers’ behavior in construction as current literature only focuses on a few unusual signs such as not wearing personal protective equipment. This paper proposes a system for recognizing workers’ dangerous behaviors. To that end, an image dataset has been collected, labeled for three such behaviors. Based on the dataset obtained, the transfer-learning approach is used with three pre-trained models, VGG19, Inception_V3 and InceptionResnet_V2. The results indicate that InceptionResnet_V2 performs better than VGG19_ and Inception_V3 for classifying unsafe behaviors and after 150 epochs, its accuracy reaches 92.44%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.W. Heinrich, D. Petersen, and N. Roos, Industrial Accident Prevention (McGraw-Hill, New York, 1980). H.W. Heinrich, D. Petersen, and N. Roos, Industrial Accident Prevention (McGraw-Hill, New York, 1980).
2.
go back to reference L. Helen and S. Rowlinson, Occupational Health and Safety in Construction Project Management (Spon Press, London, 2005), pp. 157–158. L. Helen and S. Rowlinson, Occupational Health and Safety in Construction Project Management (Spon Press, London, 2005), pp. 157–158.
3.
go back to reference T. R. Krause, The Behavior-Based Safety Process—Managing Involvement for an Injury-Free Culture (Wiley, New York, 1990). T. R. Krause, The Behavior-Based Safety Process—Managing Involvement for an Injury-Free Culture (Wiley, New York, 1990).
4.
go back to reference J. Komaki, K. D. Barwick, and L. R. Scott, “A behavioral approach to occupational safety: Pinpointing and reinforcing safety performance in a food manufacturing plan,” J. Appl. Psych. 63 (4), 434–445 (1978).CrossRef J. Komaki, K. D. Barwick, and L. R. Scott, “A behavioral approach to occupational safety: Pinpointing and reinforcing safety performance in a food manufacturing plan,” J. Appl. Psych. 63 (4), 434–445 (1978).CrossRef
5.
go back to reference A. R. Duff, I. T. Robertson, R. A. Phillips, and M. D. Cooper, “Improving safety by the modification of behavior,” Constr. Manage. Econ. 12 (1), 67–78 (1994).CrossRef A. R. Duff, I. T. Robertson, R. A. Phillips, and M. D. Cooper, “Improving safety by the modification of behavior,” Constr. Manage. Econ. 12 (1), 67–78 (1994).CrossRef
6.
go back to reference T. R. Krause, K. J. Seymour, and C. M. Sloat, “Long-term evaluation of behavior-based method for improving safety performance: A meta-analysis of 73 interrupted time-series replications,” Saf. Sci. 32 (1), 1–18 (1999).CrossRef T. R. Krause, K. J. Seymour, and C. M. Sloat, “Long-term evaluation of behavior-based method for improving safety performance: A meta-analysis of 73 interrupted time-series replications,” Saf. Sci. 32 (1), 1–18 (1999).CrossRef
7.
go back to reference T. E. McSween, Value-Based Safety Process: Improving Your Safety Culture with Behavior-Based Safety (Wiley, Hoboken, NJ, 2003).CrossRef T. E. McSween, Value-Based Safety Process: Improving Your Safety Culture with Behavior-Based Safety (Wiley, Hoboken, NJ, 2003).CrossRef
8.
go back to reference J. F. Godbey, “The effects of behavior-based safety techniques on behavior variation, targeted and non-targeted safety behaviors, and productivity and quality in manufacturing facilities,” PhD Dissertation (Auburn Univ., Auburn, AL, 2006). J. F. Godbey, “The effects of behavior-based safety techniques on behavior variation, targeted and non-targeted safety behaviors, and productivity and quality in manufacturing facilities,” PhD Dissertation (Auburn Univ., Auburn, AL, 2006).
9.
go back to reference S. Han, S. Lee, S, and F. Peña-Mora, “Vision-based motion detection for safety behavior analysis in construction,” in Proc. of 2012 Construction Research Congress (CRC) (ASCE, Reston, VA, 2012), pp. 1032–1041. S. Han, S. Lee, S, and F. Peña-Mora, “Vision-based motion detection for safety behavior analysis in construction,” in Proc. of 2012 Construction Research Congress (CRC) (ASCE, Reston, VA, 2012), pp. 1032–1041.
10.
go back to reference R. E. Levitt and N. M. Samelson, Construction Safety Management (McGraw-Hill, New York, 1987). R. E. Levitt and N. M. Samelson, Construction Safety Management (McGraw-Hill, New York, 1987).
11.
go back to reference H. Laitinen, M. Marjamäki, and K. Päivärinta, “The validity of the TR safety observation method on building construction,” Accid. Anal. Prev. 31 (5), 463–472 (1999).CrossRef H. Laitinen, M. Marjamäki, and K. Päivärinta, “The validity of the TR safety observation method on building construction,” Accid. Anal. Prev. 31 (5), 463–472 (1999).CrossRef
12.
go back to reference S. Han, S. Lee, and F. Peña-Mora, “Application of dimension reduction techniques for motion recognition: Construction worker behavior monitoring,” in Proc. of 2011 ASCE Int. Workshop on Computing in Civil Engineering (ASCE, Reston, VA, 2011), pp. 102–109. S. Han, S. Lee, and F. Peña-Mora, “Application of dimension reduction techniques for motion recognition: Construction worker behavior monitoring,” in Proc. of 2011 ASCE Int. Workshop on Computing in Civil Engineering (ASCE, Reston, VA, 2011), pp. 102–109.
13.
go back to reference J. S. Chhokar and J. A. Wallin, “Improving safety through applied behavior analysis,” J. Saf. Res. 15 (4), 141–151 (1984).CrossRef J. S. Chhokar and J. A. Wallin, “Improving safety through applied behavior analysis,” J. Saf. Res. 15 (4), 141–151 (1984).CrossRef
14.
go back to reference J. L. Komaki, S. Zlotnick, and M. Jensen, “Development of an operant-based taxonomy and observational index of supervisory behavior,” J. Appl. Psych. 71 (2), 260–269 (1986).CrossRef J. L. Komaki, S. Zlotnick, and M. Jensen, “Development of an operant-based taxonomy and observational index of supervisory behavior,” J. Appl. Psych. 71 (2), 260–269 (1986).CrossRef
25.
go back to reference W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive review,” Neural Comput. 29 (9), 2352–2449 (2017).MathSciNetCrossRef W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive review,” Neural Comput. 29 (9), 2352–2449 (2017).MathSciNetCrossRef
29.
go back to reference K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv (2014). arXiv:1409.1556 K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv (2014). arXiv:1409.1556
30.
go back to reference C. Szegedy, V. Vanhoucke, S. Ioffe, et al., Rethinking the inception architecture for computer vision. https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf. Accessed June 22, 2020. C. Szegedy, V. Vanhoucke, S. Ioffe, et al., Rethinking the inception architecture for computer vision. https://​www.​cv-foundation.​org/​openaccess/​content_​cvpr_​2016/​papers/​Szegedy_​Rethinking_​the_​Inception_​CVPR_​2016_​paper.​pdf.​ Accessed June 22, 2020.
31.
go back to reference K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition. https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html. Accessed June 22, 2020. K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition. https://​www.​cv-foundation.​org/​openaccess/​content_​cvpr_​2016/​html/​He_​Deep_​Residual_​Learning_​CVPR_​2016_​paper.​html.​ Accessed June 22, 2020.
32.
go back to reference J. Deng, W. Dong, R. Socher, et al., “ImageNet: A large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (Miami, FL, 2009). J. Deng, W. Dong, R. Socher, et al., “ImageNet: A large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (Miami, FL, 2009).
34.
go back to reference https://github.com/tiensu/Construction_Site_Unsafe_Actions_Dataset.git. https://github.com/tiensu/Construction_Site_Unsafe_Actions_Dataset.git.
35.
go back to reference R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. (Pearson, 2018), chap. 3. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. (Pearson, 2018), chap. 3.
36.
go back to reference R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. (Pearson, 2018), chap. 4. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. (Pearson, 2018), chap. 4.
38.
go back to reference Keras-team, “Image data preprocessing.” https://keras.io/api/preprocessing/image/. Accessed June 22, 2020. Keras-team, “Image data preprocessing.” https://keras.io/api/preprocessing/image/. Accessed June 22, 2020.
39.
go back to reference S. Leslie, “Cyclical learning rates for training neural networks,” arXiv (2015). arXiv:1506.01186 S. Leslie, “Cyclical learning rates for training neural networks,” arXiv (2015). arXiv:1506.01186
40.
go back to reference A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proceedings of the 25th International Conference on Neural Information Processing Systems (2012), pp. 1097–1105. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proceedings of the 25th International Conference on Neural Information Processing Systems (2012), pp. 1097–1105.
41.
go back to reference K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv (2014). arXiv:1409.1556 K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv (2014). arXiv:1409.1556
42.
go back to reference K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, et al., “Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection,” Constr. Build. Mater. 157, 322–330 (2017).CrossRef K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, et al., “Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection,” Constr. Build. Mater. 157, 322–330 (2017).CrossRef
43.
go back to reference Stanford Vision Lab, Large Scale Visual Recognition Challenge 2012 (VOC2012). http://image-net.org/challenges/LSVRC/2012/. Accessed June 22, 2020. Stanford Vision Lab, Large Scale Visual Recognition Challenge 2012 (VOC2012). http://​image-net.​org/​challenges/​LSVRC/​2012/​.​ Accessed June 22, 2020.
44.
go back to reference K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image recognition,” arXiv (2015). arXiv:1512.03385 K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image recognition,” arXiv (2015). arXiv:1512.03385
45.
go back to reference K. He, X. Zhang, S. Ren, et al., “Identity mappings in deep residual networks,” arXiv (2016). arXiv:1603.05027 K. He, X. Zhang, S. Ren, et al., “Identity mappings in deep residual networks,” arXiv (2016). arXiv:1603.05027
46.
go back to reference Uniqtech, Understand the Softmax Function in Minutes. https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d. Accessed June 22, 2020. Uniqtech, Understand the Softmax Function in Minutes. https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d. Accessed June 22, 2020.
47.
go back to reference D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv (2017). arXiv:1412.6980 D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv (2017). arXiv:1412.6980
48.
go back to reference Keras-Team, Keras: The Python Deep Learning library. https://keras.io/. Accessed June 22, 2020. Keras-Team, Keras: The Python Deep Learning library. https://​keras.​io/​.​ Accessed June 22, 2020.
Metadata
Title
Unsafe Construction Behavior Classification Using Deep Convolutional Neural Network
Authors
P. D. Hung
N. T. Su
Publication date
01-04-2021
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 2/2021
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661821020073

Other articles of this Issue 2/2021

Pattern Recognition and Image Analysis 2/2021 Go to the issue

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

An Improved Corner Detector Based on the Skeleton for Texture Image

MATHEMATICAL THEORY OF PATTERN RECOGNITION

Nearest Convex Hull Classification Based on Linear Programming

Premium Partner