Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2020

23-03-2020 | Research Article-Mechanical Engineering

Unsteady Stagnation Point Flow of Maxwell Nanofluid Over Stretching Disk with Joule Heating

Authors: Awais Ahmed, Masood Khan, Jawad Ahmed, Abdul Hafeez, Zahoor Iqbal

Published in: Arabian Journal for Science and Engineering | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In advanced technology, the cooling systems are noteworthy in thermal devices which have been accomplished both active and passive heat transfer improvement methods. Scientist and engineers have developed numerous techniques for the enhancement of heat transport in the thermal systems. The nanofluids, Joule heating, magnetic field and surface heating agents are the emerging effect for the enhancement of heat transfer which have been continuously studied. The main aim of this paper is to study the thermal and solutal aspects of the magnetohydrodynamics unsteady flow of Maxwell nanofluid under the consideration of stagnation point over radially stretching disk. The impact of resistive heating and heat generation to the transportation of thermal energy in fluid is analyzed. Moreover, the prescribed surface temperature (PST) and constant wall temperature (CWT) are considered here. Additionally, the convective energy transport at the surface of disk is assumed and phenomenon of mass transfer is explored with effect of chemical reaction. The partial differential equations which govern the flow, heat and mass transport phenomena are reduced to nonlinear differential equations (ODEs) by introducing the suitable similar transformations. Also, for the solutions of ODEs the built in MATLAB program namely bvp4c is employed and outcomes presented graphically with comprehensive discussion. As a key outcome, it is noted that the higher values of unsteadiness parameter enhance the temperature field in the case of CWT but declines in the case of PST. The increase in Eckert number boosts up the temperature distribution in the Maxwell fluid significantly. The numerical values of surface temperature and concentration gradient for varying values of different parameters are given in tabular form.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sadaf, H.; Akbar, M.U.; Nadeem, S.: Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Math. Comput. Simul. 148, 16–36 (2018)MathSciNetCrossRef Sadaf, H.; Akbar, M.U.; Nadeem, S.: Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Math. Comput. Simul. 148, 16–36 (2018)MathSciNetCrossRef
2.
go back to reference Hussain, A.; Akbar, S.; Sarwar, L.; Nadeem, S.; Iqbal, Z.: Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon 5, e01203 (2019)CrossRef Hussain, A.; Akbar, S.; Sarwar, L.; Nadeem, S.; Iqbal, Z.: Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow. Heliyon 5, e01203 (2019)CrossRef
3.
go back to reference Ramesh, G.K.; Gireesha, B.J.; Hayat, T.; Alsaedi, A.: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles. Alex. Eng. J. 55(2), 857–865 (2016)CrossRef Ramesh, G.K.; Gireesha, B.J.; Hayat, T.; Alsaedi, A.: Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles. Alex. Eng. J. 55(2), 857–865 (2016)CrossRef
4.
go back to reference Shafique, Z.; Mustafa, M.; Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 6, 627–633 (2016)CrossRef Shafique, Z.; Mustafa, M.; Mushtaq, A.: Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 6, 627–633 (2016)CrossRef
6.
go back to reference Kumar, M.S.; Sandeep, N.; Kumar, B.R.; Saleem, S.: A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alex. Eng. J. 57(3), 2027–2034 (2018)CrossRef Kumar, M.S.; Sandeep, N.; Kumar, B.R.; Saleem, S.: A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alex. Eng. J. 57(3), 2027–2034 (2018)CrossRef
8.
go back to reference Ahmed, J.; Khan, M.; Ahmad, L.: MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity. Chin. J. Phys. 60, 22–34 (2019)MathSciNetCrossRef Ahmed, J.; Khan, M.; Ahmad, L.: MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity. Chin. J. Phys. 60, 22–34 (2019)MathSciNetCrossRef
9.
go back to reference Moshkin, N.P.; Pukhnachev, V.V.; Bozhkov, Y.D.: On the unsteady, stagnation point flow of a Maxwell fluid in 2D. Int. J. Non-Linear Mech. 116, 32–38 (2019)CrossRef Moshkin, N.P.; Pukhnachev, V.V.; Bozhkov, Y.D.: On the unsteady, stagnation point flow of a Maxwell fluid in 2D. Int. J. Non-Linear Mech. 116, 32–38 (2019)CrossRef
10.
go back to reference Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110853 (2019)CrossRef Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110853 (2019)CrossRef
11.
go back to reference Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)CrossRef Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)CrossRef
12.
go back to reference Shahzad, A.; Ali, R.; Hussain, M.; Kamran, M.: Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet. Alex. Eng. J. 56(1), 35–41 (2017)CrossRef Shahzad, A.; Ali, R.; Hussain, M.; Kamran, M.: Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet. Alex. Eng. J. 56(1), 35–41 (2017)CrossRef
13.
go back to reference Soid, S.K.; Ishak, A.; Pop, I.: MHD flow and heat transfer over a radially stretching/shrinking disk. Chin. J. Phys. 56(1), 58–66 (2018)CrossRef Soid, S.K.; Ishak, A.; Pop, I.: MHD flow and heat transfer over a radially stretching/shrinking disk. Chin. J. Phys. 56(1), 58–66 (2018)CrossRef
14.
go back to reference Muhammad, N.; Nadeem, S.; Mustafa, M.T.: Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proc. Inst. Mech. Eng. Part E J. Proc. Mech. Eng. 233(2), 177–183 (2019)CrossRef Muhammad, N.; Nadeem, S.; Mustafa, M.T.: Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proc. Inst. Mech. Eng. Part E J. Proc. Mech. Eng. 233(2), 177–183 (2019)CrossRef
15.
go back to reference Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. 66, 99–105 (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. 66, 99–105 (1995)
16.
go back to reference Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240 (2006)CrossRef
17.
go back to reference Sulochan, C.; Samrat, S.P.; Sandeep, N.: Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating. Int. J. Mech. Sci. 128–129, 326–331 (2017)CrossRef Sulochan, C.; Samrat, S.P.; Sandeep, N.: Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating. Int. J. Mech. Sci. 128–129, 326–331 (2017)CrossRef
18.
go back to reference Turkyilmazoglu, M.: Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int. J. Heat Mass Transf. 126, 974–979 (2018)CrossRef Turkyilmazoglu, M.: Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int. J. Heat Mass Transf. 126, 974–979 (2018)CrossRef
19.
go back to reference Rostami, M.N.; Dinarvand, S.; Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 5, 2465–2478 (2018)CrossRef Rostami, M.N.; Dinarvand, S.; Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 5, 2465–2478 (2018)CrossRef
20.
go back to reference Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R.: A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)CrossRef Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R.: A review of thermal conductivity of various nanofluids. J. Mol. Liq. 265, 181–188 (2018)CrossRef
22.
go back to reference Nadeem, S.; Khan, M.R.; Khan, A.U.: MHD stagnation point flow of viscous nanofluid over a curved surface. Phys. Scr. 94(11), 115207 (2019)CrossRef Nadeem, S.; Khan, M.R.; Khan, A.U.: MHD stagnation point flow of viscous nanofluid over a curved surface. Phys. Scr. 94(11), 115207 (2019)CrossRef
25.
go back to reference Nadeem, S.; Alblawi, A.; Muhammad, N.; Alarifi, I.M.; Issakhov, A.; Mustafa, M.T.: A computational model for suspensions of motile micro-organisms in the flow of ferrofluid. J. Mol. Liq. 298, 112033 (2019)CrossRef Nadeem, S.; Alblawi, A.; Muhammad, N.; Alarifi, I.M.; Issakhov, A.; Mustafa, M.T.: A computational model for suspensions of motile micro-organisms in the flow of ferrofluid. J. Mol. Liq. 298, 112033 (2019)CrossRef
26.
go back to reference Abbas, N.; Malik, M.Y.; Nadeem, S.: Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput. Methods Progr. Biomed. 185, 105136 (2020)CrossRef Abbas, N.; Malik, M.Y.; Nadeem, S.: Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput. Methods Progr. Biomed. 185, 105136 (2020)CrossRef
29.
go back to reference Ajayi, T.M.; Omowaye, A.J.; Animasaun, I.L.: Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis. Int. J. Eng. Res. Afr. 28, 73–89 (2017)CrossRef Ajayi, T.M.; Omowaye, A.J.; Animasaun, I.L.: Effects of viscous dissipation and double stratification on MHD Casson fluid flow over a surface with variable thickness: boundary layer analysis. Int. J. Eng. Res. Afr. 28, 73–89 (2017)CrossRef
30.
go back to reference Butt, A.S.; Ali, A.: Entropy analysis of magnetohydrodynamics flow and heat transfer over a convectively heated radially stretching surface. J. Taiwan Int. Chem. Eng. 45, 1197–1203 (2014)CrossRef Butt, A.S.; Ali, A.: Entropy analysis of magnetohydrodynamics flow and heat transfer over a convectively heated radially stretching surface. J. Taiwan Int. Chem. Eng. 45, 1197–1203 (2014)CrossRef
Metadata
Title
Unsteady Stagnation Point Flow of Maxwell Nanofluid Over Stretching Disk with Joule Heating
Authors
Awais Ahmed
Masood Khan
Jawad Ahmed
Abdul Hafeez
Zahoor Iqbal
Publication date
23-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04468-9

Other articles of this Issue 7/2020

Arabian Journal for Science and Engineering 7/2020 Go to the issue

Premium Partners