Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-04-2020 | Original Article | Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Unsupervised and supervised methods for the detection of hurriedly created profiles in recommender systems

Journal:
International Journal of Machine Learning and Cybernetics > Issue 9/2020
Authors:
Costas Panagiotakis, Harris Papadakis, Paraskevi Fragopoulou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recommender systems try to provide users with accurate personalized suggestions for items based on an analysis of previous user decisions and the decisions made by other users. These systems suffer from profile injection attacks, where malicious profiles are generated in order to promote or demote a particular item introducing abnormal ratings. The problem of automatic detection of such malicious profiles has been recently addressed by a great number of authors in the literature using supervised and unsupervised approaches. In this paper, we propose a framework to identify anomalous rating profiles, where each attacker (outlier) hurriedly creates profiles that inject into the system an unspecified combination of random ratings and specific ratings, without any prior knowledge of the existing ratings. This attack is a superset of the two different attacks (Uniform and Delta) proposed in Harper et al. (ACM Trans Interact Intell Syst 5(4):19, 2016) making the attack model more realistic and its detection more challenging. The proposed detection method is based on several attributes related to the unpredictable behavior of the outliers in a validation set, on the user-item rating matrix, on the similarity between users and on the filler items. In this work, we propose a new attribute (RIS) to capture the randomness in item selection of the abnormal profiles. In this work, three different systems are proposed: (1) a probabilistic framework that estimates the probability of a user to be an outlier by combining several features in a completely unsupervised way. (2) An unsupervised clustering system based on the k-means algorithm that automatically spots the spurious profiles. (3) A supervised framework that uses a random forest classifier for cases where labeling sample data is available. Experimental results on the MovieLens and the Small Netflix datasets demonstrate the high performance of the proposed methods as well as the discrimination accuracy of the proposed features.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue