Skip to main content
Top

2021 | OriginalPaper | Chapter

Unsupervised Anomaly Detection for Financial Auditing with Model-Agnostic Explanations

Authors : Sebastian Kiefer, Günter Pesch

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the application of unsupervised anomaly detection (AD) for financial auditing, addressing the need for transparency and comprehensibility in AI decisions. It introduces a model-agnostic approach to explain the behavior of an ensemble of AD algorithms, enabling auditors to understand and trust the system. The architecture integrates various AD techniques and provides detailed, receiver-dependent explanations. The research, conducted in collaboration with DATEV eG, highlights the challenges and solutions in detecting anomalies in financial data, offering practical insights and innovative methods for enhancing the auditing process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Antwarg, L., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using shap. arXiv (2019) Antwarg, L., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using shap. arXiv (2019)
4.
go back to reference Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551–572 (1938)MATH Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551–572 (1938)MATH
8.
go back to reference Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime behavior – challenges and limitations. arXiv (2017) Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime behavior – challenges and limitations. arXiv (2017)
12.
go back to reference Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track (2012) Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track (2012)
14.
go back to reference Henselmann, K., Scherr, E., Ditter, D.: Applying Benford’s law to individual financial reports: an empirical investigation on the basis of SEC XBRL filings. Working papers in accounting valuation auditing (2012) Henselmann, K., Scherr, E., Ditter, D.: Applying Benford’s law to individual financial reports: an empirical investigation on the basis of SEC XBRL filings. Working papers in accounting valuation auditing (2012)
15.
go back to reference Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? arXiv (2017) Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? arXiv (2017)
21.
go back to reference Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems (2017)
22.
go back to reference Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)MATH
23.
go back to reference Mehrotra, K.G., Mohan, C.K., Huang, H.: Anomaly Detection Principles and Algorithms. Book (2017) Mehrotra, K.G., Mohan, C.K., Huang, H.: Anomaly Detection Principles and Algorithms. Book (2017)
24.
go back to reference Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Book (2019) Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Book (2019)
25.
go back to reference Morichetta, A., Casas, P., Mellia, M.: Explain-it: towards explainable AI for unsupervised network traffic analysis. In: Big-DAMA 2019 - Proceedings of the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication Networks, Part of CoNEXT 2019 (2019). https://doi.org/10.1145/3359992.3366639 Morichetta, A., Casas, P., Mellia, M.: Explain-it: towards explainable AI for unsupervised network traffic analysis. In: Big-DAMA 2019 - Proceedings of the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication Networks, Part of CoNEXT 2019 (2019). https://​doi.​org/​10.​1145/​3359992.​3366639
26.
go back to reference Munir, M., Chattha, M.A., Dengel, A., Ahmed, S.: A comparative analysis of traditional and deep learning-based anomaly detection methods for streaming data. In: Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (2019). https://doi.org/10.1109/ICMLA.2019.00105 Munir, M., Chattha, M.A., Dengel, A., Ahmed, S.: A comparative analysis of traditional and deep learning-based anomaly detection methods for streaming data. In: Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (2019). https://​doi.​org/​10.​1109/​ICMLA.​2019.​00105
33.
go back to reference Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: 3rd IEEE International Conference on Data Mining (2003) Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based on principal component classifier. In: 3rd IEEE International Conference on Data Mining (2003)
36.
go back to reference Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a Python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20, 1–7 (2019) Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a Python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20, 1–7 (2019)
Metadata
Title
Unsupervised Anomaly Detection for Financial Auditing with Model-Agnostic Explanations
Authors
Sebastian Kiefer
Günter Pesch
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_22

Premium Partner