Skip to main content
Top
Published in:

06-01-2024

Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures

Authors: Paul McLaughlin, Brian C. Franczak, Adam B. Kashlak

Published in: Journal of Classification | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A family of parsimonious contaminated shifted asymmetric Laplace mixtures is developed for unsupervised classification of asymmetric clusters in the presence of outliers and noise. A series of constraints are applied to a modified factor analyzer structure of the component scale matrices, yielding a family of twelve models. Application of the modified factor analyzer structure and these parsimonious constraints makes these models effective for the analysis of high-dimensional data by reducing the number of free parameters that need to be estimated. A variant of the expectation-maximization algorithm is developed for parameter estimation with convergence issues being discussed and addressed. Popular model selection criteria like the Bayesian information criterion and the integrated complete likelihood (ICL) are utilized, and a novel modification to the ICL is also considered. Through a series of simulation studies and real data analyses, that includes comparisons to well-established methods, we demonstrate the improvements in classification performance found using the proposed family of models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aitken, A. (1926). On Bernoulli’s numerical solution of algebraic equations. Proceedings of the Royal Society of Edimburgh, 46, 289–305.CrossRef Aitken, A. (1926). On Bernoulli’s numerical solution of algebraic equations. Proceedings of the Royal Society of Edimburgh, 46, 289–305.CrossRef
go back to reference Andrews, J. L., & McNicholas, P. D. (2011). Extending mixtures of multivariate t-factor analyzers. Statistics and Computing, 21(3), 361–373.MathSciNetCrossRef Andrews, J. L., & McNicholas, P. D. (2011). Extending mixtures of multivariate t-factor analyzers. Statistics and Computing, 21(3), 361–373.MathSciNetCrossRef
go back to reference Andrews, J. L., & McNicholas, P. D. (2011). Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. Journal of Statistical Planning and Inference, 141(4), 1479–1486.MathSciNetCrossRef Andrews, J. L., & McNicholas, P. D. (2011). Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. Journal of Statistical Planning and Inference, 141(4), 1479–1486.MathSciNetCrossRef
go back to reference Andrews, J. L., & McNicholas, P. D. (2014). Variable selection for clustering and classification. Journal of Classification, 31(2), 136–153.MathSciNetCrossRef Andrews, J. L., & McNicholas, P. D. (2014). Variable selection for clustering and classification. Journal of Classification, 31(2), 136–153.MathSciNetCrossRef
go back to reference Baek, J., McLachlan, G. J., & Flack, L. K. (2009). Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1298–1309.CrossRef Baek, J., McLachlan, G. J., & Flack, L. K. (2009). Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1298–1309.CrossRef
go back to reference Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.MathSciNetCrossRef Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.MathSciNetCrossRef
go back to reference Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Analysis and Machine Intelligence 22(7), 719–725. Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Analysis and Machine Intelligence 22(7), 719–725.
go back to reference Biernacki, C., Celeux, G., & Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal, 41(3–4), 561–575.MathSciNetCrossRef Biernacki, C., Celeux, G., & Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal, 41(3–4), 561–575.MathSciNetCrossRef
go back to reference Böhning, D., Diez, E., Scheub, R., Schlattmann, P., & Lindsay, B. (1994). The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46, 373–388.CrossRef Böhning, D., Diez, E., Scheub, R., Schlattmann, P., & Lindsay, B. (1994). The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46, 373–388.CrossRef
go back to reference Browne, R. P., & McNicholas, P. D. (2015). A mixture of generalized hyperbolic distributions. Canadian Journal of Statistics, 43(2), 176–198.MathSciNetCrossRef Browne, R. P., & McNicholas, P. D. (2015). A mixture of generalized hyperbolic distributions. Canadian Journal of Statistics, 43(2), 176–198.MathSciNetCrossRef
go back to reference Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition, 28(5), 781–793.CrossRef Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition, 28(5), 781–793.CrossRef
go back to reference Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–38.MathSciNet Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–38.MathSciNet
go back to reference Fang, Y., Franczak, B.C., & Subedi, S. (2023). Tackling the infinite likelihood problem when fitting mixtures of shifted asymmetric Laplace distributions Fang, Y., Franczak, B.C., & Subedi, S. (2023). Tackling the infinite likelihood problem when fitting mixtures of shifted asymmetric Laplace distributions
go back to reference Forina, M., Armanino, C., Lanteri, S., & Tiscornia, E. (1983). Classification of olive oils origin from their fatter acid composition. Food Research and Data Analysis (pp. 189–214). London: Applied Science Publishers. Forina, M., Armanino, C., Lanteri, S., & Tiscornia, E. (1983). Classification of olive oils origin from their fatter acid composition. Food Research and Data Analysis (pp. 189–214). London: Applied Science Publishers.
go back to reference Forina, M., & Tiscornia, E. (1982). Pattern recognition methods in the prediction of Italian olive oils origin by their fatter acid content. Annali di Chimica, 72, 143–155. Forina, M., & Tiscornia, E. (1982). Pattern recognition methods in the prediction of Italian olive oils origin by their fatter acid content. Annali di Chimica, 72, 143–155.
go back to reference Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis. The Computer Journal, 41(8), 578–588.CrossRef Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis. The Computer Journal, 41(8), 578–588.CrossRef
go back to reference Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631.MathSciNetCrossRef Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631.MathSciNetCrossRef
go back to reference Franczak, B., Browne, R. P., McNicholas, P., & Burak, K. (2018). MixSAL: Mixtures of multivariate shifted asymmetric Laplace (SAL) distributions. R package version, 1.0 Franczak, B., Browne, R. P., McNicholas, P., & Burak, K. (2018). MixSAL: Mixtures of multivariate shifted asymmetric Laplace (SAL) distributions. R package version, 1.0
go back to reference Franczak, B., Browne, R. P., & McNicholas, P. D. (2014). Mixtures of shifted asymmetric Laplace distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1149–1157.CrossRef Franczak, B., Browne, R. P., & McNicholas, P. D. (2014). Mixtures of shifted asymmetric Laplace distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1149–1157.CrossRef
go back to reference Ghahramani, Z., & Hinton, G. E. (1997). The EM algorithm for factor analyzers. Technical Report CRG-TR-96-1, University of Toronto, Toronto, ON Ghahramani, Z., & Hinton, G. E. (1997). The EM algorithm for factor analyzers. Technical Report CRG-TR-96-1, University of Toronto, Toronto, ON
go back to reference Hennig, C. (2010). Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1), 3–34.MathSciNetCrossRef Hennig, C. (2010). Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1), 3–34.MathSciNetCrossRef
go back to reference Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.CrossRef Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.CrossRef
go back to reference Jørgensen, B. (1982). Statistical properties of the generalized inverse Gaussian distribution. New York: Springer-Verlag.CrossRef Jørgensen, B. (1982). Statistical properties of the generalized inverse Gaussian distribution. New York: Springer-Verlag.CrossRef
go back to reference Kotz, S., Kozubowski, T. J. & Podgorski, K. (2001). The Laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance (1st ed.). Burkhauser Boston. Kotz, S., Kozubowski, T. J. & Podgorski, K. (2001). The Laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance (1st ed.). Burkhauser Boston.
go back to reference Lin, T.-I. (2009). Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100, 257–265.MathSciNetCrossRef Lin, T.-I. (2009). Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100, 257–265.MathSciNetCrossRef
go back to reference Lin, T.-I. (2010). Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20(3), 343–356.MathSciNetCrossRef Lin, T.-I. (2010). Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20(3), 343–356.MathSciNetCrossRef
go back to reference Maugis, C., Celeux, G., & Martin-Magniette, M.-L. (2009). Variable selection for clustering with Gaussian mixture models. Biometrics, 65(3), 701–9.MathSciNetCrossRef Maugis, C., Celeux, G., & Martin-Magniette, M.-L. (2009). Variable selection for clustering with Gaussian mixture models. Biometrics, 65(3), 701–9.MathSciNetCrossRef
go back to reference McLachlan, G. J., Bean, R. W., & Jones, L.B.-T. (2007). Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Computational Statistics and Data Analysis, 51(11), 5327–5338.MathSciNetCrossRef McLachlan, G. J., Bean, R. W., & Jones, L.B.-T. (2007). Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Computational Statistics and Data Analysis, 51(11), 5327–5338.MathSciNetCrossRef
go back to reference McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). New York: Wiley.CrossRef McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). New York: Wiley.CrossRef
go back to reference McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: John Wiley & Sons.CrossRef McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: John Wiley & Sons.CrossRef
go back to reference McLachlan, G. J., & Peel, D. (2000b). Mixtures of factor analyzers. In: Proceedings of the seventh international conference on machine learning, San Francisco, pp. 599–606. Morgan Kaufmann. McLachlan, G. J., & Peel, D. (2000b). Mixtures of factor analyzers. In: Proceedings of the seventh international conference on machine learning, San Francisco, pp. 599–606. Morgan Kaufmann.
go back to reference McNicholas, P. D. (2016). Mixture model-based classification. Boca Raton FL: Chapman & Hall/CRC Press.CrossRef McNicholas, P. D. (2016). Mixture model-based classification. Boca Raton FL: Chapman & Hall/CRC Press.CrossRef
go back to reference McNicholas, P. D., ElSherbiny, A., McDaid, A. F., & Murphy, T. B. (2022). pgmm: Parsimonious Gaussian mixture models. R package version, 1(2), 6. McNicholas, P. D., ElSherbiny, A., McDaid, A. F., & Murphy, T. B. (2022). pgmm: Parsimonious Gaussian mixture models. R package version, 1(2), 6.
go back to reference McNicholas, P. D., & Murphy, T. B. (2008). Parsimonious Gaussian mixture models. Statistics and Computing, 18(3), 285–296.MathSciNetCrossRef McNicholas, P. D., & Murphy, T. B. (2008). Parsimonious Gaussian mixture models. Statistics and Computing, 18(3), 285–296.MathSciNetCrossRef
go back to reference McNicholas, P. D., & Murphy, T. B. (2010). Model-based clustering of microarray expression data via latent Gaussian mixture models. Journal of Statistical Planning and Inference, 26(21), 2705–2712. McNicholas, P. D., & Murphy, T. B. (2010). Model-based clustering of microarray expression data via latent Gaussian mixture models. Journal of Statistical Planning and Inference, 26(21), 2705–2712.
go back to reference McNicholas, P. D., Murphy, T. B., McDaid, A. F., & Frost, D. (2010). Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis, 54(3), 711–723.MathSciNetCrossRef McNicholas, P. D., Murphy, T. B., McDaid, A. F., & Frost, D. (2010). Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis, 54(3), 711–723.MathSciNetCrossRef
go back to reference McNicholas, S., McNicholas, P. D., & Browne, R. P. (2017). A mixture of variance-gamma factor analyzers, pp. 369–385. Cham: Springer International Publishing. McNicholas, S., McNicholas, P. D., & Browne, R. P. (2017). A mixture of variance-gamma factor analyzers, pp. 369–385. Cham: Springer International Publishing.
go back to reference McNicholas, S. M., McNicholas, P. D., & Ashlock, D. A. (2021). An evolutionary algorithm with crossover and mutation for model-based clustering. Journal of Classification, 38, 264–279.MathSciNetCrossRef McNicholas, S. M., McNicholas, P. D., & Ashlock, D. A. (2021). An evolutionary algorithm with crossover and mutation for model-based clustering. Journal of Classification, 38, 264–279.MathSciNetCrossRef
go back to reference Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267–278.MathSciNetCrossRef Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267–278.MathSciNetCrossRef
go back to reference Meng, X. L., & Van Dyk, D. (1997). The EM algorithm - An old folk song sung to a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(3), 511–567.MathSciNetCrossRef Meng, X. L., & Van Dyk, D. (1997). The EM algorithm - An old folk song sung to a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(3), 511–567.MathSciNetCrossRef
go back to reference Morris, K., Punzo, A., Blostein, M., & McNicholas, P. D. (2019). Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions. Computational Statistics and Data Analysis, 132, 145–166.MathSciNetCrossRef Morris, K., Punzo, A., Blostein, M., & McNicholas, P. D. (2019). Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions. Computational Statistics and Data Analysis, 132, 145–166.MathSciNetCrossRef
go back to reference Murray, P. M., Browne, R. B., & McNicholas, P. D. (2014). Mixtures of skew-t factor analyzers. Computational Statistics and Data Analysis, 77, 326–335.MathSciNetCrossRef Murray, P. M., Browne, R. B., & McNicholas, P. D. (2014). Mixtures of skew-t factor analyzers. Computational Statistics and Data Analysis, 77, 326–335.MathSciNetCrossRef
go back to reference Punzo, A., Blostein, M., & McNicholas, P. D. (2020). High-dimensional unsupervised classification via parsimonious contaminated mixtures. Pattern Recognition, 98(107031), 1–12. Punzo, A., Blostein, M., & McNicholas, P. D. (2020). High-dimensional unsupervised classification via parsimonious contaminated mixtures. Pattern Recognition, 98(107031), 1–12.
go back to reference Punzo, A., Mazza, A., & McNicholas, P. D. (2018). ContaminatedMixt: An R package for fitting parsimonious mixtures of multivariate contaminated normal distributions. Journal of Statistical Software, 85(10), 1–25.CrossRef Punzo, A., Mazza, A., & McNicholas, P. D. (2018). ContaminatedMixt: An R package for fitting parsimonious mixtures of multivariate contaminated normal distributions. Journal of Statistical Software, 85(10), 1–25.CrossRef
go back to reference Punzo, A., & McNicholas, P. D. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506–1537.MathSciNetCrossRef Punzo, A., & McNicholas, P. D. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506–1537.MathSciNetCrossRef
go back to reference Qui, W., & Joe, H. (2020). clusterGeneration: Random cluster generation (with specified degree of separation). R package version, 1(3), 7. Qui, W., & Joe, H. (2020). clusterGeneration: Random cluster generation (with specified degree of separation). R package version, 1(3), 7.
go back to reference R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
go back to reference Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850.CrossRef Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850.CrossRef
go back to reference Schork, N. J., & Schork, M. A. (1988). Skewness and mixtures of normal distributions. Journal of the American Statistical Association, 17, 3951–3969.MathSciNet Schork, N. J., & Schork, M. A. (1988). Skewness and mixtures of normal distributions. Journal of the American Statistical Association, 17, 3951–3969.MathSciNet
go back to reference Sclove, S. L. (2002). Assessing accuracy and precision of a medical lab machine by means of cluster analysis. Journal of classification, 19(2), 197–214.MathSciNetCrossRef Sclove, S. L. (2002). Assessing accuracy and precision of a medical lab machine by means of cluster analysis. Journal of classification, 19(2), 197–214.MathSciNetCrossRef
go back to reference Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 88–103. Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 88–103.
go back to reference Steane, M. A., McNicholas, P. D., & Yada, R. (2012). Model-based classification via mixtures of multivariate t-factor analyzers. Communications in Statistics - Simulation and Computation, 41(4), 510–523.MathSciNetCrossRef Steane, M. A., McNicholas, P. D., & Yada, R. (2012). Model-based classification via mixtures of multivariate t-factor analyzers. Communications in Statistics - Simulation and Computation, 41(4), 510–523.MathSciNetCrossRef
go back to reference Steinley, D. (2004). Properties of the Hubert-Arable adjusted Rand index. Psychological methods, 9(3), 386.CrossRef Steinley, D. (2004). Properties of the Hubert-Arable adjusted Rand index. Psychological methods, 9(3), 386.CrossRef
go back to reference Telford, R., & Cunningham, R. (1991). Sex, sport and body-size dependency of hematology in highly trained athletes. Medicine and Science in Sports and Exercise, 23, 788–794.CrossRef Telford, R., & Cunningham, R. (1991). Sex, sport and body-size dependency of hematology in highly trained athletes. Medicine and Science in Sports and Exercise, 23, 788–794.CrossRef
go back to reference Tipping, T., & Bishop, C. (1999). Mixtures of probabilistic principal component analysers. Neural Computation, 11(2), 443–482.CrossRef Tipping, T., & Bishop, C. (1999). Mixtures of probabilistic principal component analysers. Neural Computation, 11(2), 443–482.CrossRef
go back to reference Tipping, T., & Bishop, C. (1999). Probabilistic principal component analysers. Journal of the Royal Statistical Society, Series B, 61, 611–622.CrossRef Tipping, T., & Bishop, C. (1999). Probabilistic principal component analysers. Journal of the Royal Statistical Society, Series B, 61, 611–622.CrossRef
go back to reference Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. Chichester: John Wiley & Sons. Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. Chichester: John Wiley & Sons.
go back to reference Tong, H., & Tortora, C. (2022). Model-based clustering and outlier detection with missing data. Advances in Data Analysis and Classification, 16(1), 5–30.MathSciNetCrossRef Tong, H., & Tortora, C. (2022). Model-based clustering and outlier detection with missing data. Advances in Data Analysis and Classification, 16(1), 5–30.MathSciNetCrossRef
go back to reference Tortora, C., McNicholas, P. D., & Browne, R. P. (2016). A mixture of generalized hyperbolic factor analyzers. Advanced in Data Analysis and Classification, 10(4), 423–440.MathSciNetCrossRef Tortora, C., McNicholas, P. D., & Browne, R. P. (2016). A mixture of generalized hyperbolic factor analyzers. Advanced in Data Analysis and Classification, 10(4), 423–440.MathSciNetCrossRef
go back to reference Tukey, J. (1960). A survey of sampling from contaminated distributions. In: Oklin, I., Ed., Contributions to probability and statistics, Redwood, CA., pp. 448–485. Stanford University Press Tukey, J. (1960). A survey of sampling from contaminated distributions. In: Oklin, I., Ed., Contributions to probability and statistics, Redwood, CA., pp. 448–485. Stanford University Press
go back to reference Wehrens, R., Buydens, L. M., Fraley, C., & Raftery, A. E. (2004). Model-based clustering for image segmentation and large datasets via sampling. Journal of Classification, 21(2), 231–253.MathSciNetCrossRef Wehrens, R., Buydens, L. M., Fraley, C., & Raftery, A. E. (2004). Model-based clustering for image segmentation and large datasets via sampling. Journal of Classification, 21(2), 231–253.MathSciNetCrossRef
go back to reference Wei, Y., Tang, Y., & McNicholas, P. D. (2018). Flexible high-dimensional unsupervised learning with missing data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3), 610–621.CrossRef Wei, Y., Tang, Y., & McNicholas, P. D. (2018). Flexible high-dimensional unsupervised learning with missing data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(3), 610–621.CrossRef
go back to reference Woodbury, M. (1950). Inverting modified matrices. Technical Report 42, Princeton University, Princeton, N.J Woodbury, M. (1950). Inverting modified matrices. Technical Report 42, Princeton University, Princeton, N.J
Metadata
Title
Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures
Authors
Paul McLaughlin
Brian C. Franczak
Adam B. Kashlak
Publication date
06-01-2024
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2024
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-023-09460-0

Premium Partner