Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-09-2015 | Focus | Issue 9/2015

Soft Computing 9/2015

Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm

Journal:
Soft Computing > Issue 9/2015
Authors:
Héctor F. Satizábal, Andres Perez-Uribe
Important notes
Communicated by I. R. Ruiz.

Abstract

Activity recognition is gaining a lot of interest given its direct use in applications like ambient assisted living and has been empowered by the increasing ubiquity of sensors (e.g., clothes, smartphones, watches). The machine learning approach to activity recognition consists on finding the signatures characterizing the activities to be recognized, with the hope of identifying them (pattern matching) within the stream of sensor data. The finding of those signatures can be very complex, thus many approaches deal with the streams of sensor data by segmenting them into sections or “time-windows”, before processing them by a feature extraction procedure. The problem then concerns the association of features to class labels. In this paper, we propose the use of the Gamma Growing Neural Gas algorithm to unsupervisely discover templates in a recording containing gestures performed by a person in a home environment. The system is able to do vector quantization from the time-series of data coming from one accelerometer, and finds salient patterns (e.g., templates) in the signal. These templates integrate information not only from single time-windows but do consider the recent history of the incoming signal (e.g., multiple time-windows). Those templates are then associated to activity classes by supervised learning. Our experiments show that the resulting performance is better than previous benchmarks of the same database.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2015

Soft Computing 9/2015 Go to the issue

Premium Partner

    Image Credits