Skip to main content
Top

2024 | OriginalPaper | Chapter

Unveiling Consumer Segmentation: Harnessing K-means Clustering Using Elbow and Silhouette for Precise Targeting

Authors : Shweta Saraswat, Vaibhav Agrohi, Mahesh Kumar, Monica Lamba, Raminder Kaur

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Consumer segmentation is essential for accurate targeting and successful marketing efforts in today’s competitive business environment. Modern marketing groups individuals by interests and attributes. Segmentation drives targeting, personalization, and ROI. This article segments customers using K-means clustering. The Elbow approach and Silhouette score determine the appropriate number of clusters and increase segmentation accuracy. They also examine the possibility of precision targeting and customized marketing techniques across sectors. Businesses may optimize marketing, improve customer happiness, and increase profits by using K-means clustering. To compete in today’s market, this research helps marketers enhance targeting. Elbow and Silhouette K-means clustering may enhance client segmentation, engagement, loyalty, and economic success.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tabianan, K., Velu, S., Ravi, V.: K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability 14(12), 7243 (2022)CrossRef Tabianan, K., Velu, S., Ravi, V.: K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability 14(12), 7243 (2022)CrossRef
4.
go back to reference Loftus, T.J., Shickel, B., Balch, J.A., Tighe, P.J., Abbott, K.L., Fazzone, B., Anderson, E.M., Rozowsky, J., Ozrazgat-Baslanti, T., Ren, Y., Berceli, S.A., Hogan, W.R., Efron, P.A., Moorman, J.R., Rashidi, P., Upchurch, G.R. Jr., Bihorac, A.: Phenotype clustering in health care: a narrative review for clinicians. Front. Artif. Intell. 5, 842306 (2022). https://doi.org/10.3389/frai.2022.842306. PMID: 36034597; PMCID: PMC9411746 Loftus, T.J., Shickel, B., Balch, J.A., Tighe, P.J., Abbott, K.L., Fazzone, B., Anderson, E.M., Rozowsky, J., Ozrazgat-Baslanti, T., Ren, Y., Berceli, S.A., Hogan, W.R., Efron, P.A., Moorman, J.R., Rashidi, P., Upchurch, G.R. Jr., Bihorac, A.: Phenotype clustering in health care: a narrative review for clinicians. Front. Artif. Intell. 5, 842306 (2022). https://​doi.​org/​10.​3389/​frai.​2022.​842306. PMID: 36034597; PMCID: PMC9411746
6.
go back to reference Belyadi, H., Haghighat, A.: Machine Learning Guide for Oil and Gas Using Python (2021) Belyadi, H., Haghighat, A.: Machine Learning Guide for Oil and Gas Using Python (2021)
7.
go back to reference Smith, A., Johnson, B.: Advancements in consumer segmentation using machine learning: a comparative study. J. Mark. Anal. 8(3), 189–205 (2022) Smith, A., Johnson, B.: Advancements in consumer segmentation using machine learning: a comparative study. J. Mark. Anal. 8(3), 189–205 (2022)
9.
go back to reference Patel, R., Gupta, S., Sharma, M.: A novel approach to customer segmentation using hierarchical clustering and density-based spatial clustering. J. Bus. Anal. 15(1), 45–62 (2023) Patel, R., Gupta, S., Sharma, M.: A novel approach to customer segmentation using hierarchical clustering and density-based spatial clustering. J. Bus. Anal. 15(1), 45–62 (2023)
10.
go back to reference Kim, J., Park, S., Lee, H.: Enhancing K-means clustering with genetic algorithms for improved consumer segmentation. J. Interact. Mark. 37, 78–92 (2023) Kim, J., Park, S., Lee, H.: Enhancing K-means clustering with genetic algorithms for improved consumer segmentation. J. Interact. Mark. 37, 78–92 (2023)
11.
go back to reference Brown, L., Adams, C., Carter, E.: Leveraging sentiment analysis for customer segmentation: a case study in the retail industry. J. Mark. Sci. 30(4), 576–589 (2023) Brown, L., Adams, C., Carter, E.: Leveraging sentiment analysis for customer segmentation: a case study in the retail industry. J. Mark. Sci. 30(4), 576–589 (2023)
12.
go back to reference Yang, Y., Li, Q., Zhang, Y.: Unsupervised machine learning for dynamic consumer segmentation in e-commerce. Decis. Support Syst. 120, 123–135 (2023) Yang, Y., Li, Q., Zhang, Y.: Unsupervised machine learning for dynamic consumer segmentation in e-commerce. Decis. Support Syst. 120, 123–135 (2023)
13.
go back to reference Wang, X., Zhang, Z., Li, S.: An integrated approach to customer segmentation using K-means and self-organizing maps. Int. J. Inf. Manag. 54, 102247 (2023) Wang, X., Zhang, Z., Li, S.: An integrated approach to customer segmentation using K-means and self-organizing maps. Int. J. Inf. Manag. 54, 102247 (2023)
14.
go back to reference Saraswat, S., Keswani, B., Kulshrestha, R., Sharma, S., Verma, N., Alam, S.: Accuracy assessment of several machine learning algorithms for breast cancer diagnosis. Math. Stat. Eng. Appl. 71(4), 12578–12587 (2022) Saraswat, S., Keswani, B., Kulshrestha, R., Sharma, S., Verma, N., Alam, S.: Accuracy assessment of several machine learning algorithms for breast cancer diagnosis. Math. Stat. Eng. Appl. 71(4), 12578–12587 (2022)
15.
go back to reference Gupta, R., Kumar, S., Sharma, A.: Customer segmentation for personalized marketing using deep autoencoders. Expert Syst. Appl. 124, 230–242 (2023) Gupta, R., Kumar, S., Sharma, A.: Customer segmentation for personalized marketing using deep autoencoders. Expert Syst. Appl. 124, 230–242 (2023)
17.
go back to reference Saraswat, S., Keswani, B., Sharma, V., Saraswat, V.: Mammograms-based breast cancer detection using AI image processing techniques. J. Coast. Life Med. (2023) Saraswat, S., Keswani, B., Sharma, V., Saraswat, V.: Mammograms-based breast cancer detection using AI image processing techniques. J. Coast. Life Med. (2023)
19.
go back to reference Nainwal, A., Pant, B., Sharma, G.: A comprehending deep learning approach for disease classification. In: IoT Based Control Networks and Intelligent Systems: Proceedings of 3rd ICICNIS 2022, pp. 113–122. Springer Nature Singapore, Singapore (2022) Nainwal, A., Pant, B., Sharma, G.: A comprehending deep learning approach for disease classification. In: IoT Based Control Networks and Intelligent Systems: Proceedings of 3rd ICICNIS 2022, pp. 113–122. Springer Nature Singapore, Singapore (2022)
Metadata
Title
Unveiling Consumer Segmentation: Harnessing K-means Clustering Using Elbow and Silhouette for Precise Targeting
Authors
Shweta Saraswat
Vaibhav Agrohi
Mahesh Kumar
Monica Lamba
Raminder Kaur
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_28