Skip to main content
Top

2021 | OriginalPaper | Chapter

Upcycling of Silicon Solar Cells: What Are the Options?

Authors : Patrick Isherwood, Kyungeun Sung

Published in: State-of-the-Art Upcycling Research and Practice

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar power is widely recognised as a key clean energy technology which can help to replace the global reliance on fossil fuel energy sources. The rate at which photovoltaics are being deployed globally has increased approximately exponentially in recent years, with the vast majority of these devices being made from silicon. Whilst the number of solar modules reaching their end-of-life is relatively modest at present, it is rising and will increase significantly over the coming decade. As the number of silicon modules reaching their end-of-life rises, the issue of reutilisation of these cells has gained attention from scientists, governments and industries. Considering the cost of production, high embedded energy, potential significant volume of waste and scarcity of resource of certain cell parts, end-of-life silicon cells should be upcycled where possible. This chapter explores different options for upcycling (more specifically advanced or improved forms of recycling and reuse) of silicon solar cells at their end-of-life with the ultimate goal of contributing to reducing their post-use negative environmental impact whilst simultaneously benefiting the economy. This work discusses a range of theoretical options for successful upcycling of silicon devices through a review of the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allwood, J. M., Cullen, J. M., Carruth, M. A., Cooper, D. R., McBrien, M., Milford, R. L., et al. (2012). Sustainable materials: With both eyes open. Cambridge: UIT Cambridge Limited. Allwood, J. M., Cullen, J. M., Carruth, M. A., Cooper, D. R., McBrien, M., Milford, R. L., et al. (2012). Sustainable materials: With both eyes open. Cambridge: UIT Cambridge Limited.
go back to reference Ardente, F., Latunussa, C. E. L., & Blengini, G. A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management, 91, 156–167.CrossRef Ardente, F., Latunussa, C. E. L., & Blengini, G. A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management, 91, 156–167.CrossRef
go back to reference Azeumo, M. F., Conte, G., Ippolito, N. M., Medici, F., Piga, L., & Santilli, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314–319.CrossRef Azeumo, M. F., Conte, G., Ippolito, N. M., Medici, F., Piga, L., & Santilli, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314–319.CrossRef
go back to reference Braungart, M., & McDonough, W. (2013). The upcycle: Beyond sustainability—designing for abundance. New York: North Point Press. Braungart, M., & McDonough, W. (2013). The upcycle: Beyond sustainability—designing for abundance. New York: North Point Press.
go back to reference Cucchiella, F., D’Adamo, I., & Rosa, P. (2015). End-of-Life of used photovoltaic modules: A financial analysis. Renewable and Sustainable Energy Reviews, 47, 552–561.CrossRef Cucchiella, F., D’Adamo, I., & Rosa, P. (2015). End-of-Life of used photovoltaic modules: A financial analysis. Renewable and Sustainable Energy Reviews, 47, 552–561.CrossRef
go back to reference Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109, 532–550.CrossRef Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109, 532–550.CrossRef
go back to reference Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225.CrossRef Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225.CrossRef
go back to reference Dong, A., Zhang, L., & Damoah, L. N. W. (2011). Beneficial and technological analysis for the recycling of solar grade silicon wastes. The Journal of The Minerals, Metals & Materials Society, 63(1), 23–27.CrossRef Dong, A., Zhang, L., & Damoah, L. N. W. (2011). Beneficial and technological analysis for the recycling of solar grade silicon wastes. The Journal of The Minerals, Metals & Materials Society, 63(1), 23–27.CrossRef
go back to reference Green, M. A. (2000). Future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 8(1), 127–139.CrossRef Green, M. A. (2000). Future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 8(1), 127–139.CrossRef
go back to reference Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17, 183–189.CrossRef Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17, 183–189.CrossRef
go back to reference Haque, A., Bharath, K. V. S., Khan, M. A., Khan, I., & Jaffery, Z. A. (2019). Fault diagnosis of photovoltaic modules. Energy Science and Engineering, 7(3), 622–644.CrossRef Haque, A., Bharath, K. V. S., Khan, M. A., Khan, I., & Jaffery, Z. A. (2019). Fault diagnosis of photovoltaic modules. Energy Science and Engineering, 7(3), 622–644.CrossRef
go back to reference Klugmann-Radziemska, E., & Ostrowski, P. (2010). Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 35(8), 1751–1759.CrossRef Klugmann-Radziemska, E., & Ostrowski, P. (2010). Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 35(8), 1751–1759.CrossRef
go back to reference Klugmann-Radziemska, E., Ostrowski, P., Drabczyk, K., Panek, P., & Szkodo, M. (2010). Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells, 94(12), 2275–2282.CrossRef Klugmann-Radziemska, E., Ostrowski, P., Drabczyk, K., Panek, P., & Szkodo, M. (2010). Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells, 94(12), 2275–2282.CrossRef
go back to reference Kong, J., Xing, P., Liu, Y., Wang, J., Jin, X., Feng, Z., et al. (2019). An economical approach for the recycling of high-purity silicon from diamond-wire saw Kerf Slurry waste. Silicon, 11(1), 367–376.CrossRef Kong, J., Xing, P., Liu, Y., Wang, J., Jin, X., Feng, Z., et al. (2019). An economical approach for the recycling of high-purity silicon from diamond-wire saw Kerf Slurry waste. Silicon, 11(1), 367–376.CrossRef
go back to reference Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111.CrossRef Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111.CrossRef
go back to reference Liu, Y., Kong, J., Zhuang, Y., Xing, P., Yin, H., & Luo, X. (2019). Recycling high purity silicon from solar grade silicon cutting slurry waste by carbothermic reduction in the electric arc furnace. Journal of Cleaner Production, 224, 709–718.CrossRef Liu, Y., Kong, J., Zhuang, Y., Xing, P., Yin, H., & Luo, X. (2019). Recycling high purity silicon from solar grade silicon cutting slurry waste by carbothermic reduction in the electric arc furnace. Journal of Cleaner Production, 224, 709–718.CrossRef
go back to reference Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 177, 746–761.CrossRef Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 177, 746–761.CrossRef
go back to reference Park, J., & Park, N. (2014). Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Advances, 4(66), 34823–34829.CrossRef Park, J., & Park, N. (2014). Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Advances, 4(66), 34823–34829.CrossRef
go back to reference Roy, A. B., Dhar, A., Choudhuri, M., Das, S., Hossain, S. M., & Kundu, A. (2016). Black silicon solar cell: Analysis optimization and evolution towards a thinner and flexible future. Nanotechnology, 27(30), 1–12.CrossRef Roy, A. B., Dhar, A., Choudhuri, M., Das, S., Hossain, S. M., & Kundu, A. (2016). Black silicon solar cell: Analysis optimization and evolution towards a thinner and flexible future. Nanotechnology, 27(30), 1–12.CrossRef
go back to reference Skoczek, A., Sample, T., & Dunlop, E. D. (2009). The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 17, 227–240.CrossRef Skoczek, A., Sample, T., & Dunlop, E. D. (2009). The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 17, 227–240.CrossRef
go back to reference Sung, K. (2017). Sustainable production and consumption by upcycling: Understanding and scaling-up Niche environmentally significant behaviour (PhD thesis). Nottingham: Nottingham Trent University. Sung, K. (2017). Sustainable production and consumption by upcycling: Understanding and scaling-up Niche environmentally significant behaviour (PhD thesis). Nottingham: Nottingham Trent University.
go back to reference Sung, K., Cooper, T., & Kettley, S. (2019). Developing interventions for scaling up UK upcycling. Energies, 12(14), 2778. Sung, K., Cooper, T., & Kettley, S. (2019). Developing interventions for scaling up UK upcycling. Energies, 12(14), 2778.
go back to reference Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.CrossRef Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.CrossRef
go back to reference Tohoda, S., Fujishima, D., Yano, A., Ogane, A., Matsuyama, K., Nakamura, Y., et al. (2012). Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer. Journal of Non-Crystalline Solids, 358(17), 2219–2222.CrossRef Tohoda, S., Fujishima, D., Yano, A., Ogane, A., Matsuyama, K., Nakamura, Y., et al. (2012). Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer. Journal of Non-Crystalline Solids, 358(17), 2219–2222.CrossRef
go back to reference Wei, D., Gao, S., Kong, J., Jin, X., Jiang, S., Zhou, S., et al. (2020). Recycling silicon from silicon cutting waste by Al–Si alloying. Journal of Cleaner Production, 251, 119647. Wei, D., Gao, S., Kong, J., Jin, X., Jiang, S., Zhou, S., et al. (2020). Recycling silicon from silicon cutting waste by Al–Si alloying. Journal of Cleaner Production, 251, 119647.
Metadata
Title
Upcycling of Silicon Solar Cells: What Are the Options?
Authors
Patrick Isherwood
Kyungeun Sung
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72640-9_4

Premium Partners