Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Wireless Personal Communications 2/2022

09-06-2022

Upgrading Information Security and Protection for Palm-Print Templates

Authors: Poonam Poonia, Pawan K. Ajmera

Published in: Wireless Personal Communications | Issue 2/2022

Login to get access
share
SHARE

Abstract

Biometric systems proven to be one of the most reliable and robust method for human identification. Integration of biometrics among the standard of living provokes the necessity to vogue secure authentication systems. The use of palm-prints for user access and authentication has increased in the last decade. To give the essential security and protection benefits, conventional neural networks (CNNs) has been bestowed during this work. The combined CNN and feature transform structure is employed for mapping palm-prints to random base-n codes. Further, secure hash algorithm (SHA-3) is used to generate secure palm-print templates. The proficiency of the proposed approach has been tested on PolyU, CASIA and IIT-Delhi palm-print datasets. The best recognition performance in terms of Equal Error Rate (EER) of 0.62% and Genuine Acceptance Rate (GAR) of 99.05% was achieved on PolyU database.
Literature
1.
go back to reference Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20. CrossRef Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20. CrossRef
2.
go back to reference Jain, A. K. (2007). Technology: Biometric recognition. Nature, 449, 38–49. CrossRef Jain, A. K. (2007). Technology: Biometric recognition. Nature, 449, 38–49. CrossRef
5.
go back to reference European council (2016) regulation of the european parliament and of the council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (general data protection regulation), 04. European council (2016) regulation of the european parliament and of the council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (general data protection regulation), 04.
6.
go back to reference Uludag, U., Pankanti, S., Prabhakar, S., & Jain, A. K. (2004). Biometric cryptosystems: Issues and challenges. Proceedings of the IEEE, 92(6), 948–960. CrossRef Uludag, U., Pankanti, S., Prabhakar, S., & Jain, A. K. (2004). Biometric cryptosystems: Issues and challenges. Proceedings of the IEEE, 92(6), 948–960. CrossRef
7.
go back to reference Ross, A. A., Shah, J., & Jain, A. K. (2005). Toward reconstructing fingerprints from minutiae points (pp. 68–80). International society for optics and photonics. Ross, A. A., Shah, J., & Jain, A. K. (2005). Toward reconstructing fingerprints from minutiae points (pp. 68–80). International society for optics and photonics.
8.
go back to reference Uludag, U., Jain, A.K., Attacks on biometric systems: a case study in fingerprints, Proceedings of SPIE, pp. 622–633. Uludag, U., Jain, A.K., Attacks on biometric systems: a case study in fingerprints, Proceedings of SPIE, pp. 622–633.
9.
go back to reference Ratha, N.K., Connell, J. Bolle, R. (1999) A biometrics-based secure authentication system, Proc. IEEE workshop automatic identification advanced technologies, pp. 70–73. Ratha, N.K., Connell, J. Bolle, R. (1999) A biometrics-based secure authentication system, Proc. IEEE workshop automatic identification advanced technologies, pp. 70–73.
10.
go back to reference Ratha, N. K., Connell, J. H., & Bolle, R. M. (2001). Enhancing security and privacy in biometrics-based authentication systems. IBM Systems Journal, 40(3), 614–634. CrossRef Ratha, N. K., Connell, J. H., & Bolle, R. M. (2001). Enhancing security and privacy in biometrics-based authentication systems. IBM Systems Journal, 40(3), 614–634. CrossRef
11.
go back to reference Ratha, N. K., Connell, J. H., & Bolle, R. M. (2003). Biometrics break-ins and band-aids. Pattern Recognition Letters, 24(13), 2105–2113. CrossRef Ratha, N. K., Connell, J. H., & Bolle, R. M. (2003). Biometrics break-ins and band-aids. Pattern Recognition Letters, 24(13), 2105–2113. CrossRef
12.
go back to reference ISO/IEC JTC1 SC27 security techniques (2011) ISO/IEC 24745:2011 Information Technology–Security Techniques - Biometric Information Protection, ISO. ISO/IEC JTC1 SC27 security techniques (2011) ISO/IEC 24745:2011 Information Technology–Security Techniques - Biometric Information Protection, ISO.
13.
go back to reference Zhu, Y., & Jiang, Y. (2020). Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data. Image and Vision Computing, 104, 104023. CrossRef Zhu, Y., & Jiang, Y. (2020). Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data. Image and Vision Computing, 104, 104023. CrossRef
14.
go back to reference Qingqiao, Hu., Yin, S., Ni, H., et al. (2020). An End to End Deep Neural Network for Iris Recognition. Procedia Computer Science, 174, 505–517. CrossRef Qingqiao, Hu., Yin, S., Ni, H., et al. (2020). An End to End Deep Neural Network for Iris Recognition. Procedia Computer Science, 174, 505–517. CrossRef
15.
go back to reference Yang, C., Liu, H., & Lan, Z. (2018). Simultaneous texture image enhancement and directional field estimation based on local quality metrics. Optik, 158, 1203–1219. CrossRef Yang, C., Liu, H., & Lan, Z. (2018). Simultaneous texture image enhancement and directional field estimation based on local quality metrics. Optik, 158, 1203–1219. CrossRef
16.
go back to reference Zhang, S., Wang, H., Wenzhun, H., et al. (2018). Combining Modified LBP and Weighted SRC for Palmprint Recognition. Signal, Image and Video Processing, 12, 1035–1042. CrossRef Zhang, S., Wang, H., Wenzhun, H., et al. (2018). Combining Modified LBP and Weighted SRC for Palmprint Recognition. Signal, Image and Video Processing, 12, 1035–1042. CrossRef
17.
go back to reference Fei, M., Xiaoke, Z., Cailing, W., et al. (2019). Multi-orientation and multi-scale features discriminant learning for palmprint recognition. Neurocomputing, 348, 169–178. CrossRef Fei, M., Xiaoke, Z., Cailing, W., et al. (2019). Multi-orientation and multi-scale features discriminant learning for palmprint recognition. Neurocomputing, 348, 169–178. CrossRef
18.
go back to reference Lai, Y. L., Jin, A., & Teoh, A. B. J. (2017). Cancellable iris template generation based on indexing-first-one hashing. Pattern Recognition, 64, 105–117. CrossRef Lai, Y. L., Jin, A., & Teoh, A. B. J. (2017). Cancellable iris template generation based on indexing-first-one hashing. Pattern Recognition, 64, 105–117. CrossRef
19.
go back to reference Jin, Z., Hwang, J. Y., Lai, Y.-L., Teoh, A. B. J., et al. (2018). Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing. IEEE Transactions on Information Forensics Security, 13(2), 393–407. CrossRef Jin, Z., Hwang, J. Y., Lai, Y.-L., Teoh, A. B. J., et al. (2018). Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing. IEEE Transactions on Information Forensics Security, 13(2), 393–407. CrossRef
20.
go back to reference Gomez-Barrero, M., Galbally, J., Rathgeb, C., & Busch, C. (2018). General framework to evaluate unlinkability in biometric template protection systems. IEEE Transactions on Information Forensics Security, 13(6), 1406–1420. CrossRef Gomez-Barrero, M., Galbally, J., Rathgeb, C., & Busch, C. (2018). General framework to evaluate unlinkability in biometric template protection systems. IEEE Transactions on Information Forensics Security, 13(6), 1406–1420. CrossRef
21.
go back to reference Juels, A., and Wattenberg, M. (1999) A fuzzy commitment scheme, Proceeding ACM conference computational communication Security, pp. 28–36. Juels, A., and Wattenberg, M. (1999) A fuzzy commitment scheme, Proceeding ACM conference computational communication Security, pp. 28–36.
23.
go back to reference Blanton, M., & Aliasgari, M. (2013). Analysis of reusability of secure sketches and fuzzy extractors. IEEE Transaction on Information Forensics Security, 8(9), 1433–1445. CrossRef Blanton, M., & Aliasgari, M. (2013). Analysis of reusability of secure sketches and fuzzy extractors. IEEE Transaction on Information Forensics Security, 8(9), 1433–1445. CrossRef
24.
go back to reference Dodis, Y., Rafail, O., Reyzin, L., & Adam, S. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139. MathSciNetMATHCrossRef Dodis, Y., Rafail, O., Reyzin, L., & Adam, S. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139. MathSciNetMATHCrossRef
25.
go back to reference Tams, B. Mih ilescu P., and Munk, A. (2015) Security considerations in minutiae-based fuzzy vaults, IEEE Transactions on Information Forensics and Security, 10(5), 985–998. Tams, B. Mih ilescu P., and Munk, A. (2015) Security considerations in minutiae-based fuzzy vaults, IEEE Transactions on Information Forensics and Security, 10(5), 985–998.
26.
go back to reference Kim, J. and Teoh, A. B. J. (2018) One-factor cancellable biometrics based on indexing-first-order hashing for fingerprint authentication, Proceeding of Conference Pattern Recognition (ICPR), Beijing, China, 2018, pp. 3108–3113. Kim, J. and Teoh, A. B. J. (2018) One-factor cancellable biometrics based on indexing-first-order hashing for fingerprint authentication, Proceeding of Conference Pattern Recognition (ICPR), Beijing, China, 2018, pp. 3108–3113.
27.
go back to reference Connie, T., Teoh, J., Goh, M., & Ngo, D. (2005). PalmHashing: A novel approach for cancelable biometrics. Information Processing Letters, 93(1), 1–5. MathSciNetCrossRef Connie, T., Teoh, J., Goh, M., & Ngo, D. (2005). PalmHashing: A novel approach for cancelable biometrics. Information Processing Letters, 93(1), 1–5. MathSciNetCrossRef
28.
go back to reference Khan, M., Zhang, J., & Tian, L. (2007). Chaotic secure content-based hidden transmission of biometric templates. Chaos, Solitons & Fractals, 32(5), 1749–1759. CrossRef Khan, M., Zhang, J., & Tian, L. (2007). Chaotic secure content-based hidden transmission of biometric templates. Chaos, Solitons & Fractals, 32(5), 1749–1759. CrossRef
29.
go back to reference Umer, S., Dhara, B. C., & Chanda, B. (2017). A novel cancelable iris recognition system based on feature learning techniques. Information Sciences, 406, 102–118. CrossRef Umer, S., Dhara, B. C., & Chanda, B. (2017). A novel cancelable iris recognition system based on feature learning techniques. Information Sciences, 406, 102–118. CrossRef
30.
go back to reference Jin, Z., Hwang, J. Y., Lai, Y., Kim, S., & Teoh, A. B. J. (2018). Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing. IEEE Transactions on Information Forensics and Security, 13(2), 393–407. CrossRef Jin, Z., Hwang, J. Y., Lai, Y., Kim, S., & Teoh, A. B. J. (2018). Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing. IEEE Transactions on Information Forensics and Security, 13(2), 393–407. CrossRef
31.
go back to reference Leng, L., & Zhang, J. (2011). Dual-key-binding cancelable palmprint cryptosystem for palmprint protection and information security. Journal Network Computational Applications, 34(6), 1979–1989. CrossRef Leng, L., & Zhang, J. (2011). Dual-key-binding cancelable palmprint cryptosystem for palmprint protection and information security. Journal Network Computational Applications, 34(6), 1979–1989. CrossRef
32.
go back to reference Liu, S., Mou, X., & Cai, Y. (2001). Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. Progress in cryptology-IndoCrypt, 2247, 316–329. MathSciNetMATH Liu, S., Mou, X., & Cai, Y. (2001). Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. Progress in cryptology-IndoCrypt, 2247, 316–329. MathSciNetMATH
33.
go back to reference Leng, L., & Zhang, J. S. (2013). PalmHash code vs palmphasor code. Neurocomputing, 108, 1–12. CrossRef Leng, L., & Zhang, J. S. (2013). PalmHash code vs palmphasor code. Neurocomputing, 108, 1–12. CrossRef
34.
go back to reference Teoh, A. B. J., Goh, A., & Ngo, D. C. L. (2006). Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1892–1901. CrossRef Teoh, A. B. J., Goh, A., & Ngo, D. C. L. (2006). Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1892–1901. CrossRef
35.
go back to reference Sadhya, D., & Raman, B. (2019). Generation of cancelable Iris templates via randomized bit sampling. IEEE Trans Inf Forensic Security, 14(11), 2972–2986. CrossRef Sadhya, D., & Raman, B. (2019). Generation of cancelable Iris templates via randomized bit sampling. IEEE Trans Inf Forensic Security, 14(11), 2972–2986. CrossRef
36.
go back to reference Bringer J., Morel C., Rathgeb C. (2015) Security analysis of bloom filter based iris biometric template protection, Proceeding of international conference on biometrics, pp 527–534. Bringer J., Morel C., Rathgeb C. (2015) Security analysis of bloom filter based iris biometric template protection, Proceeding of international conference on biometrics, pp 527–534.
37.
go back to reference Bringer, J., Morel, C., & Rathgeb, C. (2017). Security analysis and improvement of some biometric protected templates based on Bloom filters. Image and Vision Computing, 58, 239–253. CrossRef Bringer, J., Morel, C., & Rathgeb, C. (2017). Security analysis and improvement of some biometric protected templates based on Bloom filters. Image and Vision Computing, 58, 239–253. CrossRef
38.
go back to reference Marta, G., Christian, R., Javier, G., et al. (2016). Unlinkable and irreversible biometric template protection based on bloom filters. Information Sciences, 370, 18–32. MathSciNet Marta, G., Christian, R., Javier, G., et al. (2016). Unlinkable and irreversible biometric template protection based on bloom filters. Information Sciences, 370, 18–32. MathSciNet
39.
go back to reference Debanjan, S., & Sanjay, K. S. (2017). Providing robust security measures to Bloom filter based biometric template, protection schemes. Computers & Security, 67, 59–72. CrossRef Debanjan, S., & Sanjay, K. S. (2017). Providing robust security measures to Bloom filter based biometric template, protection schemes. Computers & Security, 67, 59–72. CrossRef
40.
go back to reference Drozdowski P., Garg S., Rathgeb C. et al. (2018) Privacy-preserving indexing of Iris-codes with cancellable Bloom filter-based search structures, Proceeding of European signal processing conference (EUSIPCO), 2018. Drozdowski P., Garg S., Rathgeb C. et al. (2018) Privacy-preserving indexing of Iris-codes with cancellable Bloom filter-based search structures, Proceeding of European signal processing conference (EUSIPCO), 2018.
41.
go back to reference Rathgeb, C., Breitinger, F., Busch, C. (2013) Alignment-free cancelable iris biometric templates based on adaptive bloom filters, Proceedings of ICB, pp. 1–8. Rathgeb, C., Breitinger, F., Busch, C. (2013) Alignment-free cancelable iris biometric templates based on adaptive bloom filters, Proceedings of ICB, pp. 1–8.
42.
go back to reference Ahmad, T., Hu, J., & Wang, S. (2011). Pair-polar coordinate-based cancelable fingerprint templates. Pattern Recognit., 44(25), 55–64. Ahmad, T., Hu, J., & Wang, S. (2011). Pair-polar coordinate-based cancelable fingerprint templates. Pattern Recognit., 44(25), 55–64.
43.
go back to reference Patel, V. M., Ratha, N. K., & Chellappa, R. (2015). Cancelable biometrics: A review. IEEE Signal Processing Magazine, 32, 54–65. CrossRef Patel, V. M., Ratha, N. K., & Chellappa, R. (2015). Cancelable biometrics: A review. IEEE Signal Processing Magazine, 32, 54–65. CrossRef
44.
go back to reference Teoh, A. B. J., Kuan, Y. W., & Lee, S. (2008). Cancellable biometrics and annotations on bio hash. Pattern Recognit., 41(20), 34–44. MATH Teoh, A. B. J., Kuan, Y. W., & Lee, S. (2008). Cancellable biometrics and annotations on bio hash. Pattern Recognit., 41(20), 34–44. MATH
45.
go back to reference Jin, A.T.B. (2006) Cancellable biometrics and multispace random projections, IEEE Conference on computer vision and pattern recognition workshop (CVPRW’06), pp. 164–164. Jin, A.T.B. (2006) Cancellable biometrics and multispace random projections, IEEE Conference on computer vision and pattern recognition workshop (CVPRW’06), pp. 164–164.
46.
go back to reference Pillai, J. K., Patel, V. M., Chellappa, R., Ratha, N. K. (2010) Sectored random projections for cancelable iris biometrics, IEEE international conference on acoustics speech and signal processing (ICASSP), pp. 1838–41. Pillai, J. K., Patel, V. M., Chellappa, R., Ratha, N. K. (2010) Sectored random projections for cancelable iris biometrics, IEEE international conference on acoustics speech and signal processing (ICASSP), pp. 1838–41.
47.
go back to reference Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(18), 77–93. Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(18), 77–93.
48.
go back to reference Jin, Z., Goi, B. M., Teoh, A., Tay, Y. H. (2013) A two-dimensional random projected minutiae vicinity decomposition-based cancellable fingerprint template, Security and Communication Networks, pp. 1691–1701. Jin, Z., Goi, B. M., Teoh, A., Tay, Y. H. (2013) A two-dimensional random projected minutiae vicinity decomposition-based cancellable fingerprint template, Security and Communication Networks, pp. 1691–1701.
49.
go back to reference Trivedi, A. K., Thounaojam, D. M., & Pal, S. (2020). Non-Invertible cancellable fingerprint template for fingerprint biometric. Computational Section, 90, 101690. CrossRef Trivedi, A. K., Thounaojam, D. M., & Pal, S. (2020). Non-Invertible cancellable fingerprint template for fingerprint biometric. Computational Section, 90, 101690. CrossRef
50.
go back to reference Uhl, H. J., Pschernig, E., & Uhl, A. (2009). Cancelable iris biometrics using block remapping and image warping (pp. 135–142). Springer. Uhl, H. J., Pschernig, E., & Uhl, A. (2009). Cancelable iris biometrics using block remapping and image warping (pp. 135–142). Springer.
51.
go back to reference Jenisch, S., Uhl, A. (2011) Security analysis of a cancelable iris recognition system based on block remapping, IEEE international conference on image processing (ICIP), pp. 3213–3216. Jenisch, S., Uhl, A. (2011) Security analysis of a cancelable iris recognition system based on block remapping, IEEE international conference on image processing (ICIP), pp. 3213–3216.
52.
go back to reference Li, H., Qiu, J., Teoh, A. B. J. (2020) Palmprint template protection scheme based on randomized cuckoo hashing and MinHash, Multimed Tools Application pp. 1–25. Li, H., Qiu, J., Teoh, A. B. J. (2020) Palmprint template protection scheme based on randomized cuckoo hashing and MinHash, Multimed Tools Application pp. 1–25.
53.
go back to reference Donahue, J., et al. (2014) Decaf: A deep convolutional activation feature for generic visual recognition, International conference on machine learning Donahue, J., et al. (2014) Decaf: A deep convolutional activation feature for generic visual recognition, International conference on machine learning
54.
go back to reference Oquab, M., et al. (2014) Learning and transferring mid-level image representations using convolutional neural networks, IEEE conference on computer vision and pattern recognition, 2014. Oquab, M., et al. (2014) Learning and transferring mid-level image representations using convolutional neural networks, IEEE conference on computer vision and pattern recognition, 2014.
55.
go back to reference Sinha, H., & Ajmera, P. K. (2019). Upgrading security and protection in ear biometrics. IET Biometrics, 8(4), 259–266. CrossRef Sinha, H., & Ajmera, P. K. (2019). Upgrading security and protection in ear biometrics. IET Biometrics, 8(4), 259–266. CrossRef
56.
go back to reference Zhang, D., Kong, W. K., You, J., et al. (2003). On-line palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1041–1050. CrossRef Zhang, D., Kong, W. K., You, J., et al. (2003). On-line palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1041–1050. CrossRef
57.
go back to reference Connie, T., Jin, A. T. B., Ong, M. G. K., & Ling, D. N. C. (2005). An automated palmprint recognition system. Image and Vision computing, 23(5), 501–515. CrossRef Connie, T., Jin, A. T. B., Ong, M. G. K., & Ling, D. N. C. (2005). An automated palmprint recognition system. Image and Vision computing, 23(5), 501–515. CrossRef
58.
go back to reference Nigam, A., & Gupta, P. (2015). Designing an accurate hand biometric based authentication system fusing finger knuckle print and palmprint. Neurocomputing, 151(1), 120–132. Nigam, A., & Gupta, P. (2015). Designing an accurate hand biometric based authentication system fusing finger knuckle print and palmprint. Neurocomputing, 151(1), 120–132.
59.
go back to reference Gaurav J., Amit K., & RavinderNath (2018) Multiple feature fusion for unconstrained palm print authentication, Computers and Electrical Engineering, 72, 53-78. Gaurav J., Amit K., & RavinderNath (2018) Multiple feature fusion for unconstrained palm print authentication, Computers and Electrical Engineering, 72, 53-78.
60.
go back to reference Krizhevsky, A., Ilya S., and Geoffrey E. H. (2012) Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, Krizhevsky, A., Ilya S., and Geoffrey E. H. (2012) Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems,
61.
go back to reference Liu, S., and Weihong D. (2015) Very deep convolutional neural network based image classification using small training sample size, Asian conference on pattern recognition (ACPR). Liu, S., and Weihong D. (2015) Very deep convolutional neural network based image classification using small training sample size, Asian conference on pattern recognition (ACPR).
62.
go back to reference Russakovsky, O., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. MathSciNetCrossRef Russakovsky, O., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. MathSciNetCrossRef
63.
go back to reference Kingma, D. P., and Jimmy, B. () Adam: A method for stochastic optimization, arXiv preprint arXiv:, 2014, 1412, 6980. Kingma, D. P., and Jimmy, B. () Adam: A method for stochastic optimization, arXiv preprint arXiv:, 2014, 1412, 6980.
64.
go back to reference Duchi, J., Hazan, E., & Yoram, S. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2121–2159. MathSciNetMATH Duchi, J., Hazan, E., & Yoram, S. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2121–2159. MathSciNetMATH
65.
go back to reference Tieleman, T., and Geoffrey, H. (2012) Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural networks for machine learning, 4(2): 26–31. Tieleman, T., and Geoffrey, H. (2012) Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural networks for machine learning, 4(2): 26–31.
66.
67.
go back to reference Heusel, M., et al. (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems. Heusel, M., et al. (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems.
68.
go back to reference Srivastava, N., et al. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research, 15(1), 1929–1958. MathSciNetMATH Srivastava, N., et al. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research, 15(1), 1929–1958. MathSciNetMATH
69.
go back to reference Ioffe, S., & Christian S. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:, 2015, 1502.03167. Ioffe, S., & Christian S. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:, 2015, 1502.03167.
70.
go back to reference Kaur, H., & Khanna, P. (2019). Random Slope method for generation of cancelable biometric features. Pattern Recognition Letters, 126, 31–40. CrossRef Kaur, H., & Khanna, P. (2019). Random Slope method for generation of cancelable biometric features. Pattern Recognition Letters, 126, 31–40. CrossRef
71.
go back to reference Schneier, B. (2005) Schneier, on security: cryptanalysis of SHA-1, Schneier.com Schneier, B. (2005) Schneier, on security: cryptanalysis of SHA-1, Schneier.com
72.
go back to reference Sotirov, A. et al., (2008) MD5 considered harmful today, creating a rogue CA certificate, 25th Annual Chaos Communication Congress Sotirov, A. et al., (2008) MD5 considered harmful today, creating a rogue CA certificate, 25th Annual Chaos Communication Congress
73.
go back to reference Merkle, R. C. (1979) Secrecy, authentication, and public key systems, Stanford University. Merkle, R. C. (1979) Secrecy, authentication, and public key systems, Stanford University.
74.
go back to reference National Institute of Standards and Technology 1993), C. O. R. P. O. R. A. T. E, federal information processing standards publication, 180, specifications for the secure hash standard (SHS) Building in big brother: The cryptographic policy debate. 1995 87–92 National Institute of Standards and Technology 1993), C. O. R. P. O. R. A. T. E, federal information processing standards publication, 180, specifications for the secure hash standard (SHS) Building in big brother: The cryptographic policy debate. 1995 87–92
75.
go back to reference Bertoni, Guido, et al., Sponge functions. Ecrypt Hash Workshop, 2007. Bertoni, Guido, et al., Sponge functions. Ecrypt Hash Workshop, 2007.
76.
go back to reference Cappelli, R., Ferrara, M., & Maltoni, D. (2010). Minutia cylinder-code: A new representation and matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(21), 28–41. Cappelli, R., Ferrara, M., & Maltoni, D. (2010). Minutia cylinder-code: A new representation and matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(21), 28–41.
80.
go back to reference Daugman, J. (2003). How iris recognition work. IEEE Transactions Circuits and Systems Video Technology, 14(1), 21–30. MATHCrossRef Daugman, J. (2003). How iris recognition work. IEEE Transactions Circuits and Systems Video Technology, 14(1), 21–30. MATHCrossRef
81.
go back to reference Zuo, J., Ratha, N. K., Connell J. H. (2008) Cancelable iris biometric, IEEE Conference on Pattern Recognition, pp. 1–4. Zuo, J., Ratha, N. K., Connell J. H. (2008) Cancelable iris biometric, IEEE Conference on Pattern Recognition, pp. 1–4.
82.
go back to reference Cho, S., Teoh, A. B. (2017) Face template protection via random permutation maxout transform, P roceedings of Biometrics Engineering and Application, ACM, pp. 21–27. Cho, S., Teoh, A. B. (2017) Face template protection via random permutation maxout transform, P roceedings of Biometrics Engineering and Application, ACM, pp. 21–27.
83.
go back to reference Maiorana, E., Campisi, P., Neri, A (2011) Bioconvolving: Cancelable templates for a multi-biometrics signature recognition system, IEEE Systems Conference (SysCon), pp. 495–500. Maiorana, E., Campisi, P., Neri, A (2011) Bioconvolving: Cancelable templates for a multi-biometrics signature recognition system, IEEE Systems Conference (SysCon), pp. 495–500.
Metadata
Title
Upgrading Information Security and Protection for Palm-Print Templates
Authors
Poonam Poonia
Pawan K. Ajmera
Publication date
09-06-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09805-9

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue