Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-05-2022 | Regular Paper

Urban fire station location planning using predicted demand and service quality index

Authors: Arnab Dey, Andrew Heger, Darin England

Published in: International Journal of Data Science and Analytics

Login to get access
share
SHARE

Abstract

In this article, we propose a systematic approach for fire station location planning. We develop machine learning models, based on Random Forest and Extreme Gradient Boosting, for demand prediction and utilize the models further to define a generalized index to measure quality of fire service in urban settings. Our model is built upon spatial data collected from multiple different sources. Efficacy of proper facility planning depends on choice of candidates where fire stations can be located along with existing stations, if any. Also, the travel time from these candidates to demand locations need to be taken care of to maintain fire safety standard. Here, we propose a travel time-based clustering technique to identify suitable candidates. Finally, we develop an optimization problem to select best locations to install new fire stations. Our optimization problem is built upon maximum coverage problem, based on integer programming. We further develop a two-stage stochastic optimization model to characterize the confidence in our decision outcome. We present a detailed experimental study of our proposed approach in collaboration with city of Victoria Fire Department, MN, USA. Our demand prediction model achieves true positive rate of 80% and false positive rate of 20% approximately. We aid Victoria Fire Department to select a location for a new fire station using our approach. We present detailed results on improvement statistics by locating a new facility, as suggested by our methodology, in the city of Victoria.
Literature
1.
go back to reference Ahrens, M., Evarts, B.: Fire loss in the united states during 2019. National Fire Protection Association (NFPA) report (2020) Ahrens, M., Evarts, B.: Fire loss in the united states during 2019. National Fire Protection Association (NFPA) report (2020)
3.
go back to reference Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)
4.
go back to reference Ester, M., Kriegel, H.P., Sander, J. et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp. 226–231 (1996) Ester, M., Kriegel, H.P., Sander, J. et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp. 226–231 (1996)
5.
go back to reference Turkoglu, D.C., Genevois, M.E.: A comparative survey of service facility location problems. Ann. Oper. Res., pp. 1–70 (2019) Turkoglu, D.C., Genevois, M.E.: A comparative survey of service facility location problems. Ann. Oper. Res., pp. 1–70 (2019)
6.
go back to reference Yao, J., Zhang, X., Murray, A.T.: Location optimization of urban fire stations: access and service coverage. Comput. Environ. Urban Syst. 73, 184–190 (2019) CrossRef Yao, J., Zhang, X., Murray, A.T.: Location optimization of urban fire stations: access and service coverage. Comput. Environ. Urban Syst. 73, 184–190 (2019) CrossRef
7.
go back to reference Aktaş, E., Özaydın, Ö., Bozkaya, B., et al.: Optimizing fire station locations for the Istanbul metropolitan municipality. Interfaces 43(3), 240–255 (2013) CrossRef Aktaş, E., Özaydın, Ö., Bozkaya, B., et al.: Optimizing fire station locations for the Istanbul metropolitan municipality. Interfaces 43(3), 240–255 (2013) CrossRef
8.
go back to reference Nyimbili, P.H., Erden, T.: Comparative evaluation of gis-based best-worst method (bwm) for emergency facility planning: perspectives from two decision-maker groups. Nat. Hazards 105(1), 1031–1067 (2021) CrossRef Nyimbili, P.H., Erden, T.: Comparative evaluation of gis-based best-worst method (bwm) for emergency facility planning: perspectives from two decision-maker groups. Nat. Hazards 105(1), 1031–1067 (2021) CrossRef
9.
go back to reference Church, R.L., Li, W.: Estimating spatial efficiency using cyber search, gis, and spatial optimization: a case study of fire service deployment in los angeles county. Int. J. Geogr. Inf. Sci. 30(3), 535–553 (2016) CrossRef Church, R.L., Li, W.: Estimating spatial efficiency using cyber search, gis, and spatial optimization: a case study of fire service deployment in los angeles county. Int. J. Geogr. Inf. Sci. 30(3), 535–553 (2016) CrossRef
10.
go back to reference Chevalier, P., Thomas, I., Geraets, D., et al.: Locating fire stations: an integrated approach for Belgium. Socioecon. Plann. Sci. 46(2), 173–182 (2012) CrossRef Chevalier, P., Thomas, I., Geraets, D., et al.: Locating fire stations: an integrated approach for Belgium. Socioecon. Plann. Sci. 46(2), 173–182 (2012) CrossRef
11.
go back to reference Murray, A.T.: Advances in location modeling: Gis linkages and contributions. J. Geogr. Syst. 12(3), 335–354 (2010) CrossRef Murray, A.T.: Advances in location modeling: Gis linkages and contributions. J. Geogr. Syst. 12(3), 335–354 (2010) CrossRef
12.
go back to reference Soltani, A., Balaghi, R., Rezaei, M., et al.: Spatial analysis and urban land use planning with emphasis on hospital site selection, case study: Isfahan city. Bull. Geogr. Socio-economic Ser. 43(43), 71–89 (2019) Soltani, A., Balaghi, R., Rezaei, M., et al.: Spatial analysis and urban land use planning with emphasis on hospital site selection, case study: Isfahan city. Bull. Geogr. Socio-economic Ser. 43(43), 71–89 (2019)
13.
go back to reference Abdullahi, S., Mahmud, A.R,B., Pradhan, B.: Spatial modelling of site suitability assessment for hospitals using geographical information system-based multicriteria approach at Gazvin city, Iran. Geocarto Int. 29(2), 164–184 (2014) Abdullahi, S., Mahmud, A.R,B., Pradhan, B.: Spatial modelling of site suitability assessment for hospitals using geographical information system-based multicriteria approach at Gazvin city, Iran. Geocarto Int. 29(2), 164–184 (2014)
14.
15.
go back to reference Toregas, C., Swain, R., ReVelle, C., et al.: The location of emergency service facilities. Oper. Res. 19(6), 1363–1373 (1971) CrossRef Toregas, C., Swain, R., ReVelle, C., et al.: The location of emergency service facilities. Oper. Res. 19(6), 1363–1373 (1971) CrossRef
16.
go back to reference Abareshi, M., Zaferanieh, M.: A bi-level capacitated p-median facility location problem with the most likely allocation solution. Transp. Res. Part B: Methodol. 123, 1–20 (2019) CrossRef Abareshi, M., Zaferanieh, M.: A bi-level capacitated p-median facility location problem with the most likely allocation solution. Transp. Res. Part B: Methodol. 123, 1–20 (2019) CrossRef
17.
go back to reference Bolouri, S., Vafaeinejad, A., Alesheikh, A., et al.: Minimizing response time to accidents in big cities: a two ranked level model for allocating fire stations. Arab. J. Geosci. 13(16), 1–13 (2020) CrossRef Bolouri, S., Vafaeinejad, A., Alesheikh, A., et al.: Minimizing response time to accidents in big cities: a two ranked level model for allocating fire stations. Arab. J. Geosci. 13(16), 1–13 (2020) CrossRef
18.
go back to reference O’Connor, C.D., Calkin, D.E., Thompson, M.P.: An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildland Fire 26(7), 587–597 (2017) O’Connor, C.D., Calkin, D.E., Thompson, M.P.: An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildland Fire 26(7), 587–597 (2017)
19.
go back to reference Sevinc, V., Kucuk, O., Goltas, M.: A Bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol. Manage. 457(117), 723 (2020) Sevinc, V., Kucuk, O., Goltas, M.: A Bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol. Manage. 457(117), 723 (2020)
20.
go back to reference Eden, J.M., Krikken, F., Drobyshev, I.: An empirical prediction approach for seasonal fire risk in the boreal forests. Int. J. Climatol. 40(5), 2732–2744 (2020) CrossRef Eden, J.M., Krikken, F., Drobyshev, I.: An empirical prediction approach for seasonal fire risk in the boreal forests. Int. J. Climatol. 40(5), 2732–2744 (2020) CrossRef
21.
go back to reference Choi, M.Y., Jun, S.: Fire risk assessment models using statistical machine learning and optimized risk indexing. Appl. Sci. 10(12), 4199 (2020) CrossRef Choi, M.Y., Jun, S.: Fire risk assessment models using statistical machine learning and optimized risk indexing. Appl. Sci. 10(12), 4199 (2020) CrossRef
22.
go back to reference Bui, D.T., Van Le, H., Hoang, N.D.: Gis-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Eco. Inform. 48, 104–116 (2018) CrossRef Bui, D.T., Van Le, H., Hoang, N.D.: Gis-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Eco. Inform. 48, 104–116 (2018) CrossRef
23.
go back to reference Salehi, M., Rusu, L.I., Lynar, T. et al.: Dynamic and robust wildfire risk prediction system: an unsupervised approach. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–254 (2016) Salehi, M., Rusu, L.I., Lynar, T. et al.: Dynamic and robust wildfire risk prediction system: an unsupervised approach. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–254 (2016)
24.
go back to reference Turco, M., Jerez, S., Doblas-Reyes, F.J., et al.: Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9(1), 1–9 (2018) CrossRef Turco, M., Jerez, S., Doblas-Reyes, F.J., et al.: Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9(1), 1–9 (2018) CrossRef
25.
go back to reference Cheng, T., Wang, J.: Integrated spatio-temporal data mining for forest fire prediction. Trans. GIS 12(5), 591–611 (2008) CrossRef Cheng, T., Wang, J.: Integrated spatio-temporal data mining for forest fire prediction. Trans. GIS 12(5), 591–611 (2008) CrossRef
26.
go back to reference Singh Walia, B., Hu, Q., Chen, J., et al.: A dynamic pipeline for spatio-temporal fire risk prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 764–773 (2018) Singh Walia, B., Hu, Q., Chen, J., et al.: A dynamic pipeline for spatio-temporal fire risk prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 764–773 (2018)
27.
go back to reference Madaio, M., Chen, S.T., Haimson, O.L., et al.: Firebird: predicting fire risk and prioritizing fire inspections in Atlanta. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 185–194 (2016) Madaio, M., Chen, S.T., Haimson, O.L., et al.: Firebird: predicting fire risk and prioritizing fire inspections in Atlanta. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 185–194 (2016)
28.
go back to reference Agarwal, P., Tang, J., Narayanan, A.N.L., et al.: Big data and predictive analytics in fire risk using weather data. Risk Anal. 40(7), 1438–1449 (2020) CrossRef Agarwal, P., Tang, J., Narayanan, A.N.L., et al.: Big data and predictive analytics in fire risk using weather data. Risk Anal. 40(7), 1438–1449 (2020) CrossRef
29.
go back to reference Jin, G., Zhu, C., Chen, X. et al.: Ufsp-net: a neural network with spatio-temporal information fusion for urban fire situation prediction. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, p. 012050 (2020) Jin, G., Zhu, C., Chen, X. et al.: Ufsp-net: a neural network with spatio-temporal information fusion for urban fire situation prediction. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, p. 012050 (2020)
30.
go back to reference Lau, C.K., Lai, K.K., Lee, Y.P., et al.: Fire risk assessment with scoring system, using the support vector machine approach. Fire Saf. J. 78, 188–195 (2015) CrossRef Lau, C.K., Lai, K.K., Lee, Y.P., et al.: Fire risk assessment with scoring system, using the support vector machine approach. Fire Saf. J. 78, 188–195 (2015) CrossRef
31.
go back to reference Salehi, M., Rashidi, L.: A survey on anomaly detection in evolving data: [with application to forest fire risk prediction]. ACM SIGKDD Explor. Newsl. 20(1), 13–23 (2018) CrossRef Salehi, M., Rashidi, L.: A survey on anomaly detection in evolving data: [with application to forest fire risk prediction]. ACM SIGKDD Explor. Newsl. 20(1), 13–23 (2018) CrossRef
32.
go back to reference Jin, G., Wang, Q., Zhu, C., et al.: Urban fire situation forecasting: deep sequence learning with spatio-temporal dynamics. Appl. Soft Comput. 97(106), 730 (2020) Jin, G., Wang, Q., Zhu, C., et al.: Urban fire situation forecasting: deep sequence learning with spatio-temporal dynamics. Appl. Soft Comput. 97(106), 730 (2020)
33.
go back to reference Jaldell, H.: How important is the time factor? saving lives using fire and rescue services. Fire Technol. 53(2), 695–708 (2017) CrossRef Jaldell, H.: How important is the time factor? saving lives using fire and rescue services. Fire Technol. 53(2), 695–708 (2017) CrossRef
34.
go back to reference Association, N.F.P., et al.: NFPA 1720, standard for the organization and deployment of fire suppression operations, emergency medical operations, and special operations to the public by volunteer fire departments. National Fire Protection Association (2020) Association, N.F.P., et al.: NFPA 1720, standard for the organization and deployment of fire suppression operations, emergency medical operations, and special operations to the public by volunteer fire departments. National Fire Protection Association (2020)
35.
go back to reference Liu, K., Li, X., Zou, C.C. et al.: Ambulance dispatch via deep reinforcement learning. In: Proceedings of the 28th International Conference on Advances in Geographic Information Systems, pp 123–126 (2020) Liu, K., Li, X., Zou, C.C. et al.: Ambulance dispatch via deep reinforcement learning. In: Proceedings of the 28th International Conference on Advances in Geographic Information Systems, pp 123–126 (2020)
36.
go back to reference Dey, A.: Planning the future fire station in the city of Victoria (2020) Dey, A.: Planning the future fire station in the city of Victoria (2020)
37.
go back to reference Council, V.C.: Our Victoria Tomorrow. City Council (2019) Council, V.C.: Our Victoria Tomorrow. City Council (2019)
40.
go back to reference Bishop, C.M.: Pattern recognition. Mach. Learn. 128(9) (2006) Bishop, C.M.: Pattern recognition. Mach. Learn. 128(9) (2006)
41.
go back to reference Alpaydin, E.: Introduction to Machine Learning. MIT Press (2020) Alpaydin, E.: Introduction to Machine Learning. MIT Press (2020)
42.
go back to reference Church, R., ReVelle, C.: The maximal covering location problem. In: Papers of the Regional Science Association, Springer, pp. 101–118 (1974) Church, R., ReVelle, C.: The maximal covering location problem. In: Papers of the Regional Science Association, Springer, pp. 101–118 (1974)
53.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011) MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011) MathSciNetMATH
54.
go back to reference James, G., Witten, D., Hastie, T., et al.: An Introduction to Statistical Learning, vol. 112. Springer (2013) James, G., Witten, D., Hastie, T., et al.: An Introduction to Statistical Learning, vol. 112. Springer (2013)
56.
go back to reference Studio, I.I.C.O. (2020) V20.1. International Business Machines Corp, Armonk, USA Studio, I.I.C.O. (2020) V20.1. International Business Machines Corp, Armonk, USA
Metadata
Title
Urban fire station location planning using predicted demand and service quality index
Authors
Arnab Dey
Andrew Heger
Darin England
Publication date
14-05-2022
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00328-x

Premium Partner