Skip to main content
Top
Published in: Emission Control Science and Technology 2/2017

06-12-2016

Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution

Authors: Sauli Halonen, Teija Kangas, Mauri Haataja, Ulla Lassi

Published in: Emission Control Science and Technology | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A temperature-concentration dependent surface fit for the relative viscosity of a urea-water-solution (UWS) is calculated based on experimental and literature data. For the surface fit, a 2D Lorentzian function was used, where the x-axis was assigned to a urea mass fraction and the y-axis to the solution temperature and the rest of the Lorentzian function parameters were optimized based on the experimental and literature data. The surface model describes the relative viscosity of under-saturated urea-water-solution. The experimental data for the kinematic viscosity was measured with an Ubbelohde capillary viscometer whose temperature was controlled with a thermostat. The temperature and concentration range was from 293.15 to 353.15 K in 10-K increments and for urea mass fractions from 0.325 to 0.7. The kinematic viscosity values from the experiment were converted to relative viscosity by calculating the density of the UWS. An exponential fit was calculated to describe the specific gravity of the UWS based on literature data. Additionally, the surface tension of the UWS was measured at room temperature (293.15 K) in a mass fraction range from 0.302 to 0.596. As a result, simple models describing UWS properties were obtained and these models can be implemented into computational fluid dynamics (CFD) simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59(3), 335–345 (2000)CrossRef Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59(3), 335–345 (2000)CrossRef
2.
go back to reference Yarin, A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)CrossRef Yarin, A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)CrossRef
3.
go back to reference Smith, H., Lauer, T., Mayer, M., Pierson, S.: Optical and numerical investigations on the mechanisms of deposit formation in SCR systems. SAE Int. J. Fuels Lubricants 7(2), 525–542 (2014)CrossRef Smith, H., Lauer, T., Mayer, M., Pierson, S.: Optical and numerical investigations on the mechanisms of deposit formation in SCR systems. SAE Int. J. Fuels Lubricants 7(2), 525–542 (2014)CrossRef
4.
go back to reference Wang, T.J., Baek, S.W., Lee, S.Y., Kang, D.H., Yeo, G.K.: Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AICHE J. 55(12), 3267–3276 (2009)CrossRef Wang, T.J., Baek, S.W., Lee, S.Y., Kang, D.H., Yeo, G.K.: Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AICHE J. 55(12), 3267–3276 (2009)CrossRef
5.
go back to reference Chadwell, H., Asnes, B.: The viscosities of several aqueous solutions of organic substances. II. J. Am. Chem. Soc. 52(9), 3507–3518 (1930)CrossRef Chadwell, H., Asnes, B.: The viscosities of several aqueous solutions of organic substances. II. J. Am. Chem. Soc. 52(9), 3507–3518 (1930)CrossRef
6.
go back to reference Kawahara, K., Tanford, C.: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241(13), 3228–3232 (1966) Kawahara, K., Tanford, C.: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241(13), 3228–3232 (1966)
7.
go back to reference Toryanik, A.I., Topalova, E.M.: Effect of urea on the structure of water over a wide temperature range. J. Struct. Chem. 26(5), 830–832 (1986)CrossRef Toryanik, A.I., Topalova, E.M.: Effect of urea on the structure of water over a wide temperature range. J. Struct. Chem. 26(5), 830–832 (1986)CrossRef
8.
go back to reference Jones, G., Talley, S.K.: The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. 55(2), 624–642 (1933)CrossRef Jones, G., Talley, S.K.: The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. 55(2), 624–642 (1933)CrossRef
9.
go back to reference Jäger, J., Nývlt, J., Horaček, S., Gottfried, J.: Viskositäten von harnstofflösungen. Collect. Czechoslov. Chem. Commun. 30(6), 2117–2121 (1965)CrossRef Jäger, J., Nývlt, J., Horaček, S., Gottfried, J.: Viskositäten von harnstofflösungen. Collect. Czechoslov. Chem. Commun. 30(6), 2117–2121 (1965)CrossRef
11.
go back to reference Perman, E.P., Lovett, T.: Vapour pressure and heat of dilution of aqueous solutions. Trans. Faraday Soc. 22, 1–19 (1926)CrossRef Perman, E.P., Lovett, T.: Vapour pressure and heat of dilution of aqueous solutions. Trans. Faraday Soc. 22, 1–19 (1926)CrossRef
12.
go back to reference Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the injection of urea-water-solution for automotive SCR DeNOx-systems: modeling of two-phase flow and spray/wall-interaction. SAE Technical Papers. (2006) Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the injection of urea-water-solution for automotive SCR DeNOx-systems: modeling of two-phase flow and spray/wall-interaction. SAE Technical Papers. (2006)
13.
go back to reference Ström, H., Lundström, A., Andersson, B.: Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 150(1), 69–82 (2009)CrossRef Ström, H., Lundström, A., Andersson, B.: Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 150(1), 69–82 (2009)CrossRef
14.
go back to reference Viswanath, D.S., Ghosh, T., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y.: Chapter 1—introduction. In: Viscosity of Liquids Theory, Estimation, Experiment, and Data, pp. 1–2. Springer. (2007) Viswanath, D.S., Ghosh, T., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y.: Chapter 1—introduction. In: Viscosity of Liquids Theory, Estimation, Experiment, and Data, pp. 1–2. Springer. (2007)
16.
go back to reference Cannon, M.R., Manning, R.E., Bell, J.D.: Viscosity measurement: the kinetic energy correction and a new viscometer. Anal. Chem. 32(3), 355–358 (1960)CrossRef Cannon, M.R., Manning, R.E., Bell, J.D.: Viscosity measurement: the kinetic energy correction and a new viscometer. Anal. Chem. 32(3), 355–358 (1960)CrossRef
17.
go back to reference Babkina, T.S., Kuznetsov, A.V.: Phase equilibria in binary subsystems of urea-biuret-water system. J. Therm. Anal. Calorim. 101(1), 33–40 (2010)CrossRef Babkina, T.S., Kuznetsov, A.V.: Phase equilibria in binary subsystems of urea-biuret-water system. J. Therm. Anal. Calorim. 101(1), 33–40 (2010)CrossRef
18.
go back to reference Speyers, C.: Solubilities of some carbon compounds and densities of their solutions. Am. J. Sci. 4(82), 293–302 (1902)CrossRef Speyers, C.: Solubilities of some carbon compounds and densities of their solutions. Am. J. Sci. 4(82), 293–302 (1902)CrossRef
19.
go back to reference Pinck, L.A., Kelly, M.A.: The solubility of urea in water. J. Am. Chem. Soc. 47(8), 2170–2172 (1925)CrossRef Pinck, L.A., Kelly, M.A.: The solubility of urea in water. J. Am. Chem. Soc. 47(8), 2170–2172 (1925)CrossRef
20.
go back to reference Kakinuma, H.: The solubility of urea in water. J. Phys. Chem. 45(6), 1045–1046 (1941)CrossRef Kakinuma, H.: The solubility of urea in water. J. Phys. Chem. 45(6), 1045–1046 (1941)CrossRef
21.
go back to reference Miller Jr., F.W., Dittmar, H.R.: The solubility of urea in water. The heat of fusion of urea. J. Am. Chem. Soc. 56(4), 848–849 (1934)CrossRef Miller Jr., F.W., Dittmar, H.R.: The solubility of urea in water. The heat of fusion of urea. J. Am. Chem. Soc. 56(4), 848–849 (1934)CrossRef
22.
go back to reference Hawley, G.G., Lewis, R.J.: Hawley’s Condensed Chemical Dictionary. Van Nostrand Reinhold, New York (1997) Hawley, G.G., Lewis, R.J.: Hawley’s Condensed Chemical Dictionary. Van Nostrand Reinhold, New York (1997)
23.
go back to reference The International Association for the Properties of Water and Steam: Revised Release on Surface Tension of Ordinary Water Substance (2014) The International Association for the Properties of Water and Steam: Revised Release on Surface Tension of Ordinary Water Substance (2014)
24.
go back to reference Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20(1), 97–105 (1975) Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20(1), 97–105 (1975)
25.
26.
go back to reference Yeoh, G.H., Tu, J.: Chapter 5—liquid–particle flows. In: Yeoh, G.H., Tu, J. (eds.) Computational Techniques for Multiphase Flows, pp. 313–349. Butterworth-Heinemann, Oxford (2010)CrossRef Yeoh, G.H., Tu, J.: Chapter 5—liquid–particle flows. In: Yeoh, G.H., Tu, J. (eds.) Computational Techniques for Multiphase Flows, pp. 313–349. Butterworth-Heinemann, Oxford (2010)CrossRef
27.
go back to reference Bandyopadhyay, D., Mohan, S., Ghosh, S.K., Choudhury, N.: Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B 118(40), 11757–11768 (2014)CrossRef Bandyopadhyay, D., Mohan, S., Ghosh, S.K., Choudhury, N.: Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B 118(40), 11757–11768 (2014)CrossRef
Metadata
Title
Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution
Authors
Sauli Halonen
Teija Kangas
Mauri Haataja
Ulla Lassi
Publication date
06-12-2016
Publisher
Springer International Publishing
Published in
Emission Control Science and Technology / Issue 2/2017
Print ISSN: 2199-3629
Electronic ISSN: 2199-3637
DOI
https://doi.org/10.1007/s40825-016-0051-1

Other articles of this Issue 2/2017

Emission Control Science and Technology 2/2017 Go to the issue

Premium Partner