Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Use and Assessment of Sources in Conspiracy Theorists’ Communities

Authors : Tim Schatto-Eckrodt, Svenja Boberg, Florian Wintterlin, Thorsten Quandt

Published in: Disinformation in Open Online Media

Publisher: Springer International Publishing

share
SHARE

Abstract

The endemic spread of misinformation online has become a subject of study for many academic disciplines. Part of the emerging literature on this topic has shown that conspiracy theories (CTs) are closely related to this phenomenon. One of the strategies deployed to combat this online misinformation is confronting users with corrective information, often drawn from mainstream media outlets. This study tries to answer the questions (I) whether there are online-communities that exclusively consume conspiracy theorist media and (II) how these communities use information sources from the mainstream. The results of our explorative, large-scale content analysis show that even in conspiracy theorist communities, mainstream media sources are being used very similar to sources from the conspiracy theorist media spectrum, thus not reaching any of their assumed corrective potential.

Footnotes
Literature
  1. Anton, A., Schetsche, M., Walter, M.K.: Einleitung: Wirklichkeitskonstruktion zwischen Orthodoxie und Heterodoxie – zur Wissenssoziologie von Verschwörungstheorien. In: Anton, A., Schetsche, M., Walter, Michael K. (eds.) Konspiration, pp. 9–25. Springer, Wiesbaden (2014). https://​doi.​org/​10.​1007/​978-3-531-19324-3_​1View Article
  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5), 993–1022 (2003). https://​doi.​org/​10.​1162/​jmlr.​2003.​3.​4-5.​993View ArticleMATH
  3. Broniatowski, D.A., et al.: Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am. J. Public Health e1–e7 (2018). http://​doi.​org/​10.​2105/​AJPH.​2018.​304567View Article
  4. Cao, J., Xia, T., Li, J., Zhang, Y., Tang, S.: A density-based method for adaptive LDA model selection. Neurocomputing 72(7–9), 1775–1781 (2009). https://​doi.​org/​10.​1016/​j.​neucom.​2008.​06.​011View Article
  5. Chan, M.-P.S., Jones, C.R., Hall Jamieson, K., Albarracín, D.: Debunking: a meta-analysis of the psychological efficacy of messages countering misinformation. Psychol. Sci. 28(11), 1531–1546 (2017). https://​doi.​org/​10.​1177/​0956797617714579​View Article
  6. Douglas, K.M., Sutton, R.M.: Why conspiracy theories matter: a social psychological analysis. Eur. Rev. Soc. Psychol. 29(1), 256–298 (2018). https://​doi.​org/​10.​1080/​10463283.​2018.​1537428View Article
  7. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101(Suppl. 1), 5228–5235 (2004). https://​doi.​org/​10.​1073/​pnas.​0307752101View Article
  8. Holt, K., Ustad Figenschou, T., Frischlich, L.: Key dimensions of alternative news media. Digit. J. 1–10 (2019). https://​doi.​org/​10.​1080/​21670811.​2019.​1625715View Article
  9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), 168 (2004). https://​doi.​org/​10.​1145/​1014052.​1014073
  10. Klein, C., Clutton, P., Polito, V.: Topic modeling reveals distinct interests within an online conspiracy forum. Front. Psychol. 9, e0134641–e01346412 (2018). https://​doi.​org/​10.​3389/​fpsyg.​2018.​00189View Article
  11. Lakens, D.: Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Pers. Sci. 8(4), 355–362 (2017)View Article
  12. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(March), 159–174 (1977)View Article
  13. Lazer, D.M.J., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018)View Article
  14. Leman, P.J., Cinnirella, M.: Beliefs in conspiracy theories and the need for cognitive closure. Front. Psychol. 4, 1–10 (2013). https://​doi.​org/​10.​3389/​fpsyg.​2013.​00378View Article
  15. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th International Conference on World Wide Web, pp. 342–351 (2005). https://​doi.​org/​10.​1145/​1060745.​1060797
  16. Mathes, R., Pfetsch, B.: The role of the alternative press in the agenda-building process: spill-over effects and media opinion leadership. Eur. J. Commun. 6(1), 33–62 (1991). https://​doi.​org/​10.​1177/​0267323191006001​003View Article
  17. Pariser, E.: The Filter Bubble. Penguin, UK (2011)
  18. Scharkow, M.: Automatische Inhaltsanalyse. In: Möhring, W., Schlütz, D. (eds.) Handbuch standardisierte Erhebungsverfahren in der Kommunikationswissenschaft, pp. 289–306. Springer, Wiesbaden (2013). https://​doi.​org/​10.​1007/​978-3-531-18776-1_​16View Article
  19. Silge, J., Robinson, D.: tidytext: text mining and analysis using tidy data principles in R. J. Open Source Softw. 1(3), 37 (2016). http://​doi.​org/​10.​21105/​joss.​00037View Article
  20. Soukup, C.: 9/11 conspiracy theories on the World Wide Web: digital rhetoric and alternative epistemology. J. Lit. Technol. 9(3), 2–25 (2008)
  21. Weber, R., Popova, L.: Testing equivalence in communication research: theory and application. Commun. Methods Meas. 6(3), 190–213 (2012)View Article
  22. Wood, M.: Has the Internet been good for conspiracy theorising? PsyPAG Q. 88, 31–34 (2013)
  23. World Economic Forum. The Global Risks Report (2018). http://​www3.​weforum.​org/​docs/​WEF_​GRR18_​Report.​pdf
  24. Zollo, F., et al.: Debunking in a World of Tribes. CoRR, abs/1510.04267 (2015)
Metadata
Title
Use and Assessment of Sources in Conspiracy Theorists’ Communities
Authors
Tim Schatto-Eckrodt
Svenja Boberg
Florian Wintterlin
Thorsten Quandt
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39627-5_3

Premium Partner