Skip to main content
Top

2019 | OriginalPaper | Chapter

Use of a Simulation Environment and Metaheuristic Algorithm for Human Resource Management in a Cyber-Physical System

Authors : Hankun Zhang, Borut Buchmeister, Shifeng Liu, Robert Ojstersek

Published in: Simulation for Industry 4.0

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At the time of Industry 4.0 and the emergence of collaborative workplaces based on the cooperation of robots (machines) and humans, the number of human workplaces in the Industry 4.0 production system is crucial. In this chapter, we present the use of the evolutionary computation methods that use the input data of a real production system and transfer it through the five-stage Cyber-Physical System architecture into the simulation environment in order to determine the optimal number of workers. By using these methods, we confirm the hypothesis of the importance of correctly determining the number of workers in the manufacturing process in Industry 4.0. Number of workers’ determination has a key influence on the product flow time, machine utilization and cost-effectiveness of a production system. Research results show the importance and effectiveness of combining evolutionary computation methods and simulation modelling for the purpose of implementing the advanced approaches of Industry 4.0. The demonstrated approach of combining evolutionary computing, simulation environments and methods of Industry 4.0 can be used from mass customization to mass production systems for the purpose of single-criteria or multi-criteria optimization.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Kazemi BSN (2002) Multiphase particle swarm optimization. Syracuse University, New York, USA Al-Kazemi BSN (2002) Multiphase particle swarm optimization. Syracuse University, New York, USA
2.
go back to reference Alghazi AA (2017) Balancing and sequencing of mixed model assembly lines. Clemson University, South Carolina, USA Alghazi AA (2017) Balancing and sequencing of mixed model assembly lines. Clemson University, South Carolina, USA
3.
go back to reference Armstrong M (2006) A handbook of human resource management practice. Cambridge University Press, India Armstrong M (2006) A handbook of human resource management practice. Cambridge University Press, India
4.
go back to reference Askin RG, Standridge CR (1993) Modeling and analysis of manufacturing systems. Wiley, New York, USAMATH Askin RG, Standridge CR (1993) Modeling and analysis of manufacturing systems. Wiley, New York, USAMATH
5.
go back to reference Bartodziej CJ (2016) The concept industry 4.0: an empirical analysis of technologies and applications in production logistics. Springer, Berlin Bartodziej CJ (2016) The concept industry 4.0: an empirical analysis of technologies and applications in production logistics. Springer, Berlin
6.
go back to reference Becker C, Scholl A (2009) Balancing assembly lines with variable parallel workplaces: problem definition and effective solution procedure. Eur J Oper Res 199(2):359–374CrossRef Becker C, Scholl A (2009) Balancing assembly lines with variable parallel workplaces: problem definition and effective solution procedure. Eur J Oper Res 199(2):359–374CrossRef
7.
go back to reference Borshchev A (2013) The big book of simulation modeling: multimethod modeling with AnyLogic 6. AnyLogic North America, Chicago, USA Borshchev A (2013) The big book of simulation modeling: multimethod modeling with AnyLogic 6. AnyLogic North America, Chicago, USA
8.
go back to reference Centobelli P, Cerchione R, Murino T, Gallo M (2016) Layout and material flow optimization in digital factory. Int J Simul Modell 15(2):223–235CrossRef Centobelli P, Cerchione R, Murino T, Gallo M (2016) Layout and material flow optimization in digital factory. Int J Simul Modell 15(2):223–235CrossRef
9.
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95: Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan. pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95: Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan. pp 39–43
10.
go back to reference Emery JC (1969) Job shop scheduling by means of simulation and an optimum-seeking search. In: Winter simulation conference: proceedings of the third conference on applications of simulation, Los Angeles, USA, pp 363–372 Emery JC (1969) Job shop scheduling by means of simulation and an optimum-seeking search. In: Winter simulation conference: proceedings of the third conference on applications of simulation, Los Angeles, USA, pp 363–372
11.
go back to reference Fishman GS (2013) Discrete-event simulation: modeling, programming, and analysis. Springer Science & Business Media Fishman GS (2013) Discrete-event simulation: modeling, programming, and analysis. Springer Science & Business Media
12.
go back to reference Franchini L, Caillaud E, Nguyen P, Lacoste G (2001) Workload control of human resources to improve production management. Int J Prod Res 39(7):1385–1403CrossRef Franchini L, Caillaud E, Nguyen P, Lacoste G (2001) Workload control of human resources to improve production management. Int J Prod Res 39(7):1385–1403CrossRef
13.
go back to reference Geyer M, Linner S (2005) Human aspects in manufacturing process management. In: Zulch G, Jagdev HS, Stock P (eds) Integrating human aspects in production management. Springer, Berlin, pp 101–109CrossRef Geyer M, Linner S (2005) Human aspects in manufacturing process management. In: Zulch G, Jagdev HS, Stock P (eds) Integrating human aspects in production management. Springer, Berlin, pp 101–109CrossRef
14.
go back to reference Granja C, Almada-Lobo B, Janela F (2014) An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm. J Biomed Inform 52:427–437CrossRef Granja C, Almada-Lobo B, Janela F (2014) An optimization based on simulation approach to the patient admission scheduling problem using a linear programing algorithm. J Biomed Inform 52:427–437CrossRef
15.
go back to reference Hecklau F, Galeitzke M, Flachs S, Kohl H (2016) Holistic approach for human resource management in Industry 4.0. Procedia CIRP 54:1–6CrossRef Hecklau F, Galeitzke M, Flachs S, Kohl H (2016) Holistic approach for human resource management in Industry 4.0. Procedia CIRP 54:1–6CrossRef
17.
go back to reference Joines JA, Roberts SD (2013) Simulation modeling with SIMIO: a workbook. Penncylvania, USA, Simio LLC Sewickley Joines JA, Roberts SD (2013) Simulation modeling with SIMIO: a workbook. Penncylvania, USA, Simio LLC Sewickley
18.
go back to reference Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium, SIS’03, Indianapolis, USA, IEEE, pp 80–87 Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium, SIS’03, Indianapolis, USA, IEEE, pp 80–87
19.
go back to reference Law AM, Kelton WD (2007) Simulation modeling and analysis. USA, McGraw-Hill, New YorkMATH Law AM, Kelton WD (2007) Simulation modeling and analysis. USA, McGraw-Hill, New YorkMATH
20.
go back to reference Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef
21.
22.
go back to reference Marilungo E, Papetti A, Germani M, Peruzzini M (2017) From PSS to CPS design: a real industrial use case toward Industry 4.0. Procedia CIRP 64:357–362CrossRef Marilungo E, Papetti A, Germani M, Peruzzini M (2017) From PSS to CPS design: a real industrial use case toward Industry 4.0. Procedia CIRP 64:357–362CrossRef
23.
go back to reference Marinakis Y, Marinaki M (2012) A hybrid particle swarm optimization algorithm for the open vehicle routing problem. In: Birattari DM, Blum MC (eds) Swarm intelligence: 8th international conference, ANTS 2012, Brussels, Belgium, 12–14 Sept 2012, Proceedings. Berlin, Springer Berlin Heidelberg, pp 180–187 Marinakis Y, Marinaki M (2012) A hybrid particle swarm optimization algorithm for the open vehicle routing problem. In: Birattari DM, Blum MC (eds) Swarm intelligence: 8th international conference, ANTS 2012, Brussels, Belgium, 12–14 Sept 2012, Proceedings. Berlin, Springer Berlin Heidelberg, pp 180–187
24.
go back to reference Ojstersek R, Zhang H, Shifeng L, Buchmeister B (2018) Improved Heuristic Kalman Algorithm for solving multi-objective flexible job shop scheduling problem. Procedia Manuf 17:895–902 Ojstersek R, Zhang H, Shifeng L, Buchmeister B (2018) Improved Heuristic Kalman Algorithm for solving multi-objective flexible job shop scheduling problem. Procedia Manuf 17:895–902
25.
go back to reference Ojstersek R, Buchmeister B (2017) Use of simulation software environments for the purpose of production optimization. In: Katalinic B (ed) DAAAM interantional procedings. Zadar, DAAAM International, pp 750–758 Ojstersek R, Buchmeister B (2017) Use of simulation software environments for the purpose of production optimization. In: Katalinic B (ed) DAAAM interantional procedings. Zadar, DAAAM International, pp 750–758
26.
go back to reference Ojstersek R, Zhang H, Palcic I, Buchmeister B (2017) Use of Heuristic Kalman algorithm for JSSP. In: Andraš A (ed) XVII International scientific conference on industrial systems. Novi Sad, Faculty of Technical Sciences, Department for Industrial Engineering and Management, pp 72–77 Ojstersek R, Zhang H, Palcic I, Buchmeister B (2017) Use of Heuristic Kalman algorithm for JSSP. In: Andraš A (ed) XVII International scientific conference on industrial systems. Novi Sad, Faculty of Technical Sciences, Department for Industrial Engineering and Management, pp 72–77
27.
go back to reference Pakrashi A, Chaudhuri BB (2016) A Kalman filtering induced heuristic optimization based partitional data clustering. Inf Sci 369:704–717CrossRef Pakrashi A, Chaudhuri BB (2016) A Kalman filtering induced heuristic optimization based partitional data clustering. Inf Sci 369:704–717CrossRef
28.
go back to reference Palacios JJ, Puente J, Vela CR, González-Rodríguez I (2016) Benchmarks for fuzzy job shop problems. Inf Sci 329:736–752CrossRef Palacios JJ, Puente J, Vela CR, González-Rodríguez I (2016) Benchmarks for fuzzy job shop problems. Inf Sci 329:736–752CrossRef
29.
go back to reference Pegden CD (2008) Introduction to SIMIO. In: Winter simulation conference. Miami, USA, pp 229–235 Pegden CD (2008) Introduction to SIMIO. In: Winter simulation conference. Miami, USA, pp 229–235
30.
go back to reference Penas O, Plateaux R, Patalano S, Hammadi M (2017) Multi-scale approach from mechatronic to cyber-physical systems for the design of manufacturing systems. Comput Ind 86:52–69CrossRef Penas O, Plateaux R, Patalano S, Hammadi M (2017) Multi-scale approach from mechatronic to cyber-physical systems for the design of manufacturing systems. Comput Ind 86:52–69CrossRef
31.
go back to reference Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business School Press, Boston, USA Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business School Press, Boston, USA
32.
go back to reference Pinedo ML (2012) Scheduling: theory, algorithms, and systems. Springer, Boston, Massachusetts, USACrossRef Pinedo ML (2012) Scheduling: theory, algorithms, and systems. Springer, Boston, Massachusetts, USACrossRef
33.
go back to reference Poormirzaee R (2016) S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion curves via PSO inversion algorithm. Arab J Geosci 9(16):661–673CrossRef Poormirzaee R (2016) S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion curves via PSO inversion algorithm. Arab J Geosci 9(16):661–673CrossRef
34.
go back to reference Shamim S, Cang S, Yu H, Li Y (2016) Management approaches for Industry 4.0: a human resource management perspective. In: 2016 Congress on evolutionary computation (CEC). Vancouver, Canada, IEEE, pp 5309–5316 Shamim S, Cang S, Yu H, Li Y (2016) Management approaches for Industry 4.0: a human resource management perspective. In: 2016 Congress on evolutionary computation (CEC). Vancouver, Canada, IEEE, pp 5309–5316
35.
go back to reference Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99. Washington, USA, pp 1945–1950 Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99. Washington, USA, pp 1945–1950
36.
go back to reference Shin HJ, Cho KW, Oh CH (2018) SVM-based dynamic reconfiguration CPS for manufacturing system in Industry 4.0. Wirel Commun Mob Comput 2018:1–13 Shin HJ, Cho KW, Oh CH (2018) SVM-based dynamic reconfiguration CPS for manufacturing system in Industry 4.0. Wirel Commun Mob Comput 2018:1–13
37.
go back to reference Singh MR, Mahapatra SS (2016) A quantum behaved particle swarm optimization for flexible job shop scheduling. Comput Ind Eng 93:36–44CrossRef Singh MR, Mahapatra SS (2016) A quantum behaved particle swarm optimization for flexible job shop scheduling. Comput Ind Eng 93:36–44CrossRef
38.
go back to reference Toscano R, Lyonnet P (2010) A new heuristic approach for non-convex optimization problems. Inf Sci 180(10):1955–1966CrossRef Toscano R, Lyonnet P (2010) A new heuristic approach for non-convex optimization problems. Inf Sci 180(10):1955–1966CrossRef
39.
go back to reference Toscano R, Lyonnet P (2012) A Kalman optimization approach for solving some industrial electronics problems. IEEE Trans Ind Electron 59(11):4456–4464CrossRef Toscano R, Lyonnet P (2012) A Kalman optimization approach for solving some industrial electronics problems. IEEE Trans Ind Electron 59(11):4456–4464CrossRef
42.
go back to reference Xiang W, Yin J, Lim G (2015) An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput Ind Eng 85:335–345CrossRef Xiang W, Yin J, Lim G (2015) An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput Ind Eng 85:335–345CrossRef
43.
go back to reference Yang W, Takakuwa S (2017) Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Winter simulation conference. Las Vegas, USA, pp 3908–3916 Yang W, Takakuwa S (2017) Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In: Winter simulation conference. Las Vegas, USA, pp 3908–3916
44.
go back to reference Yao X, Zhou J, Zhang J, Boer CR (2017) From intelligent manufacturing to smart manufacturing for Industry 4.0 driven by next generation artificial intelligence and further on. In: 5th International conference on enterprise systems. Beijing, China, pp 311–318 Yao X, Zhou J, Zhang J, Boer CR (2017) From intelligent manufacturing to smart manufacturing for Industry 4.0 driven by next generation artificial intelligence and further on. In: 5th International conference on enterprise systems. Beijing, China, pp 311–318
45.
go back to reference Zhang H, Liu S, Moraca S, Ojstersek R (2017) An effective use of hybrid metaheuristics algorithm for job shop scheduling problem. Int J Simul Modell 16(4):644–657CrossRef Zhang H, Liu S, Moraca S, Ojstersek R (2017) An effective use of hybrid metaheuristics algorithm for job shop scheduling problem. Int J Simul Modell 16(4):644–657CrossRef
46.
go back to reference Zhang Y, Gong DW, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf Sci 192:213–227CrossRef Zhang Y, Gong DW, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf Sci 192:213–227CrossRef
47.
go back to reference Zhou Z, Li M, Shen L (2006) Manufacturing resource management for collaborative process planning. In: Wang K, Kovacs GL, Wozny M, Fang M (eds) Knowledge enterprise: intelligent strategies in product design, manufacturing, and management. Springer, Shanghai, pp 926–931CrossRef Zhou Z, Li M, Shen L (2006) Manufacturing resource management for collaborative process planning. In: Wang K, Kovacs GL, Wozny M, Fang M (eds) Knowledge enterprise: intelligent strategies in product design, manufacturing, and management. Springer, Shanghai, pp 926–931CrossRef
Metadata
Title
Use of a Simulation Environment and Metaheuristic Algorithm for Human Resource Management in a Cyber-Physical System
Authors
Hankun Zhang
Borut Buchmeister
Shifeng Liu
Robert Ojstersek
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04137-3_14

Premium Partners