Skip to main content
Top

2019 | OriginalPaper | Chapter

Use of Ionic Liquids for the Biorefinery

Authors : Raquel Prado, Lisa Weigand, Tom Welton

Published in: Green Chemistry and Chemical Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Biofuel
Combustible fuel derived from biomass.
Biomass
Nonfossil organic matter.
Biorefinery
A collection of processes for the production of fuels and chemical products from biological sources.
Deep eutectic solvent
A liquid composed by mixing a salt with a strong hydrogen bond donor molecule.
Ionic liquid
A liquid composed of solely of ions when pure.
Lignocellulose
A biological matrix consisting of the polymers cellulose, hemicellulose, and lignin.
Platform chemical
A chemical that can be used as a precursor to many others as the basis of a chemicals industry.
Pretreatment
The initial step in the deconstruction of lignocellulose biomass.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mikkola J, Sklavounos E, King AWT, Virtanen P (2015) Chemistry. The biorefinery and green chemistry. The Royal Society of Chemistry, Cambridge, pp 1–37 Mikkola J, Sklavounos E, King AWT, Virtanen P (2015) Chemistry. The biorefinery and green chemistry. The Royal Society of Chemistry, Cambridge, pp 1–37
3.
go back to reference McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54PubMedCrossRef McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54PubMedCrossRef
4.
5.
go back to reference van Eijck J, Batidzirai B, Faaij A (2014) Current and future economic performance of first and second generation biofuels in developing countries. Appl Energy 135:115–141CrossRef van Eijck J, Batidzirai B, Faaij A (2014) Current and future economic performance of first and second generation biofuels in developing countries. Appl Energy 135:115–141CrossRef
6.
go back to reference Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science (80-.) 315:804–807CrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science (80-.) 315:804–807CrossRef
7.
go back to reference Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906PubMedCrossRef Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906PubMedCrossRef
8.
go back to reference Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes. In: Biomass now – sustainable growth and use. Intech Open, London, pp 347–388 Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes. In: Biomass now – sustainable growth and use. Intech Open, London, pp 347–388
9.
go back to reference De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. Industrial biorefineries and white biotechnology, Elsevier De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. Industrial biorefineries and white biotechnology, Elsevier
10.
go back to reference Jungmeier G (Joanneum RF mbH), van Ree R, van Zeeland AUF and BR (2014) IEA Bioenergy Task 42 Biorefining: definition biorefining & classification biorefining Jungmeier G (Joanneum RF mbH), van Ree R, van Zeeland AUF and BR (2014) IEA Bioenergy Task 42 Biorefining: definition biorefining & classification biorefining
11.
go back to reference Kumar P, Barrett DM, Barrett DM, Delwiche MJ, Delwiche MJ, Stroeve P, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Anal Ed 48:3713–3729 Kumar P, Barrett DM, Barrett DM, Delwiche MJ, Delwiche MJ, Stroeve P, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Anal Ed 48:3713–3729
12.
go back to reference Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405CrossRef Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405CrossRef
13.
go back to reference Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58CrossRef Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58CrossRef
14.
go back to reference Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science (80-) 344:709CrossRef Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science (80-) 344:709CrossRef
15.
go back to reference Winkler R (2005) Valuation of ecosystem goods and services Part 1: an integrated dynamic approach. Synthesis (Stuttg) 59:82–93 Winkler R (2005) Valuation of ecosystem goods and services Part 1: an integrated dynamic approach. Synthesis (Stuttg) 59:82–93
16.
go back to reference Biermann CJ (1996) Handbook of pulping and papermaking. Academic, San Diego Biermann CJ (1996) Handbook of pulping and papermaking. Academic, San Diego
17.
go back to reference Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and ưood; Biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76CrossRef Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and ưood; Biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76CrossRef
18.
go back to reference Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6:246–256CrossRef Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6:246–256CrossRef
19.
go back to reference Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6:181–248CrossRef Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6:181–248CrossRef
20.
go back to reference Prado R, Weber CC (2016) Applications of ionic liquids. In: Application, purification, and recovery of ionic liquids. Elsevier, pp 1–58 Prado R, Weber CC (2016) Applications of ionic liquids. In: Application, purification, and recovery of ionic liquids. Elsevier, pp 1–58
21.
go back to reference Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMedCrossRef Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMedCrossRef
22.
go back to reference Wasserscheid P, Welton T (2006) Ionic liquids in synthesis. Wiley-VCH, Weinheim Wasserscheid P, Welton T (2006) Ionic liquids in synthesis. Wiley-VCH, Weinheim
23.
go back to reference Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefPubMed Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRefPubMed
24.
go back to reference Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32CrossRef Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32CrossRef
25.
go back to reference Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRef Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRef
26.
go back to reference Xia S, Baker G, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv 4:10586–10596PubMedCrossRef Xia S, Baker G, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv 4:10586–10596PubMedCrossRef
27.
go back to reference Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
28.
go back to reference Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o -phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648PubMedCrossRef Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o -phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648PubMedCrossRef
29.
go back to reference Graenacher C (1934) Cellulose solution. US Patent 4,446,331, pp 1–4 Graenacher C (1934) Cellulose solution. US Patent 4,446,331, pp 1–4
30.
go back to reference Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRef Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975PubMedCrossRef
31.
go back to reference Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef
32.
go back to reference Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180–189CrossRef Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180–189CrossRef
33.
go back to reference Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101:521–532PubMedCrossRef Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101:521–532PubMedCrossRef
34.
go back to reference Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275CrossRef Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275CrossRef
35.
go back to reference Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335CrossRef Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335CrossRef
36.
go back to reference Liu Y-R, Thomsen K, Nie Y, Zhang S-J, Meyer AS (2016) Predictive screening of ionic liquids for dissolving cellulose and experimental verification. Green Chem 18:6246–6254CrossRef Liu Y-R, Thomsen K, Nie Y, Zhang S-J, Meyer AS (2016) Predictive screening of ionic liquids for dissolving cellulose and experimental verification. Green Chem 18:6246–6254CrossRef
37.
go back to reference Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133PubMedCrossRef Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133PubMedCrossRef
38.
go back to reference Liu D, Xia K, Cai W, Yang R, Wang L, Wang B (2012) Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr Polym 87:1058–1064CrossRef Liu D, Xia K, Cai W, Yang R, Wang L, Wang B (2012) Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr Polym 87:1058–1064CrossRef
39.
go back to reference Payal RS, Balasubramanian S (2014) Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 16:17458PubMedCrossRef Payal RS, Balasubramanian S (2014) Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 16:17458PubMedCrossRef
40.
go back to reference Payal RS, Bejagam KK, Mondal A, Balasubramanian S (2015) Dissolution of cellulose in room temperature ionic liquids: anion dependence. J Phys Chem B 119:1654–1659PubMedCrossRef Payal RS, Bejagam KK, Mondal A, Balasubramanian S (2015) Dissolution of cellulose in room temperature ionic liquids: anion dependence. J Phys Chem B 119:1654–1659PubMedCrossRef
41.
go back to reference Gericke M, Liebert T, El SOA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493CrossRef Gericke M, Liebert T, El SOA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493CrossRef
42.
go back to reference Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353PubMedCrossRef Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353PubMedCrossRef
43.
go back to reference Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544PubMedCrossRef Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544PubMedCrossRef
44.
go back to reference Zhao Y, Liu X, Wang J, Zhang S (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117:9042–9049PubMedCrossRef Zhao Y, Liu X, Wang J, Zhang S (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117:9042–9049PubMedCrossRef
45.
go back to reference Andanson J-M, Bordes E, Devémy J, Leroux F, Pádua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528CrossRef Andanson J-M, Bordes E, Devémy J, Leroux F, Pádua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528CrossRef
46.
go back to reference Huo F, Liu Z, Wang W (2013) Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. J Phys Chem B 117:11780–11792PubMedCrossRef Huo F, Liu Z, Wang W (2013) Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. J Phys Chem B 117:11780–11792PubMedCrossRef
47.
go back to reference Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325CrossRef Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325CrossRef
48.
go back to reference Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728PubMedCrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728PubMedCrossRef
49.
go back to reference Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef
50.
51.
go back to reference Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607PubMedCrossRef Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607PubMedCrossRef
52.
go back to reference Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271CrossRef
53.
go back to reference Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301PubMedCrossRef Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301PubMedCrossRef
54.
go back to reference Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947PubMedCrossRef Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947PubMedCrossRef
55.
go back to reference Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5CrossRef Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5CrossRef
56.
go back to reference Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. J Phys Chem B 117:3469–3479PubMedCrossRef Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. J Phys Chem B 117:3469–3479PubMedCrossRef
57.
go back to reference Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef
58.
go back to reference Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRef Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRef
59.
go back to reference Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148PubMedCrossRef Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148PubMedCrossRef
60.
go back to reference Rosatella AA, Afonso CAM (2015) Chapter 2. The dissolution of biomass in ionic liquids towards pre-treatment approach. The Royal Society of Chemistry, Cambridge, pp 38–64 Rosatella AA, Afonso CAM (2015) Chapter 2. The dissolution of biomass in ionic liquids towards pre-treatment approach. The Royal Society of Chemistry, Cambridge, pp 38–64
61.
go back to reference Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646CrossRef Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646CrossRef
62.
go back to reference Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405PubMedCrossRef Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405PubMedCrossRef
63.
go back to reference Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, Kent MS, Singh S (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116:10049–10054PubMedCrossRef Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, Kent MS, Singh S (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116:10049–10054PubMedCrossRef
64.
go back to reference Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941PubMedCrossRef Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941PubMedCrossRef
65.
go back to reference Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8CrossRef Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8CrossRef
66.
go back to reference Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75PubMedCrossRef Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75PubMedCrossRef
67.
go back to reference Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967CrossRef Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967CrossRef
68.
go back to reference da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3CrossRef da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3CrossRef
69.
go back to reference Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587PubMedCrossRef Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587PubMedCrossRef
70.
go back to reference Weerachanchai P, Kwak SK, Lee J-M (2014) Effects of solubility properties of solvents and biomass on biomass pretreatment. Bioresour Technol 170:160–166PubMedCrossRef Weerachanchai P, Kwak SK, Lee J-M (2014) Effects of solubility properties of solvents and biomass on biomass pretreatment. Bioresour Technol 170:160–166PubMedCrossRef
71.
go back to reference Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid – a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133CrossRef Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid – a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133CrossRef
72.
go back to reference Domínguez de María P (2014) Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol 89:11–18CrossRef Domínguez de María P (2014) Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol 89:11–18CrossRef
73.
go back to reference Miyafuji H (2015) Application of ionic liquids for effective use of woody biomass. J Wood Sci 61:343–350CrossRef Miyafuji H (2015) Application of ionic liquids for effective use of woody biomass. J Wood Sci 61:343–350CrossRef
74.
go back to reference Hart WES, Harper JB, Aldous L (2015) The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem 17:214–218CrossRef Hart WES, Harper JB, Aldous L (2015) The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem 17:214–218CrossRef
75.
go back to reference Wang Y, Wei L, Li K, Ma Y, Ma N, Ding S, Wang L, Zhao D, Yan B, Wan W, Zhang Q, Wang X, Wang J, Li H (2014) Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures. Bioresour Technol 170:499–505PubMedCrossRef Wang Y, Wei L, Li K, Ma Y, Ma N, Ding S, Wang L, Zhao D, Yan B, Wan W, Zhang Q, Wang X, Wang J, Li H (2014) Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures. Bioresour Technol 170:499–505PubMedCrossRef
76.
go back to reference Akiba T, Tsurumaki A, Ohno H (2017) Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem 19:2260–2265CrossRef Akiba T, Tsurumaki A, Ohno H (2017) Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem 19:2260–2265CrossRef
77.
go back to reference Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32:175–201CrossRef Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32:175–201CrossRef
78.
go back to reference Hossain MM, Aldous L (2012) Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust J Chem 65:1465CrossRef Hossain MM, Aldous L (2012) Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust J Chem 65:1465CrossRef
79.
go back to reference Mai NL, Ha SH, Koo Y-M (2014) Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Process Biochem 49:1144–1151CrossRef Mai NL, Ha SH, Koo Y-M (2014) Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Process Biochem 49:1144–1151CrossRef
80.
go back to reference Lynam JG, Coronella CJ (2014) Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresour Technol 166:471–478PubMedCrossRef Lynam JG, Coronella CJ (2014) Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresour Technol 166:471–478PubMedCrossRef
81.
go back to reference Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons B, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16:3830–3840CrossRef Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons B, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16:3830–3840CrossRef
82.
go back to reference Upfal J, MacFarlane DR, Forsyth SA (2005) Solvents for use in the treatment of lignin-containing materials. patent number EP1654415A1, pp 1–40 Upfal J, MacFarlane DR, Forsyth SA (2005) Solvents for use in the treatment of lignin-containing materials. patent number EP1654415A1, pp 1–40
83.
go back to reference Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K, Kumar G, Paripati P (2011) Biomass Pretreatment, US Patent 8,030,030 B2 Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K, Kumar G, Paripati P (2011) Biomass Pretreatment, US Patent 8,030,030 B2
84.
go back to reference George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://doi.org/10.1039/C4GC01208ACrossRef George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://​doi.​org/​10.​1039/​C4GC01208ACrossRef
85.
go back to reference Konda N, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86PubMedPubMedCentralCrossRef Konda N, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86PubMedPubMedCentralCrossRef
86.
go back to reference Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376PubMedCrossRef Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376PubMedCrossRef
90.
go back to reference van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rocha MAA, Kroon MC (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665PubMedCrossRef van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rocha MAA, Kroon MC (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665PubMedCrossRef
91.
go back to reference Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119CrossRef Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119CrossRef
92.
go back to reference Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem 13:2489–2499CrossRef Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem 13:2489–2499CrossRef
93.
go back to reference Verdía P, Brandt A, Hallett JP, Ray MJ, Welton T (2014) Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem 16:1617CrossRef Verdía P, Brandt A, Hallett JP, Ray MJ, Welton T (2014) Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem 16:1617CrossRef
94.
go back to reference Weigand L, Mostame S, Brandt-Talbot A, Welton T, Hallett JP (2017) Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discuss 0:1–19 Weigand L, Mostame S, Brandt-Talbot A, Welton T, Hallett JP (2017) Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discuss 0:1–19
95.
go back to reference Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102CrossRef Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102CrossRef
96.
go back to reference Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem 16:3098–3106CrossRef Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem 16:3098–3106CrossRef
97.
go back to reference Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124CrossRef Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124CrossRef
98.
go back to reference Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920CrossRef Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920CrossRef
99.
go back to reference Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214CrossRef Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214CrossRef
100.
go back to reference Costa SPF, Azevedo AMO, Pinto PCAG, Saraiva MLMFS (2017) Environmental impact of ionic liquids: recent advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 10:2321–2347PubMedCrossRef Costa SPF, Azevedo AMO, Pinto PCAG, Saraiva MLMFS (2017) Environmental impact of ionic liquids: recent advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 10:2321–2347PubMedCrossRef
101.
go back to reference Hou X-D, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493PubMedCrossRef Hou X-D, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493PubMedCrossRef
102.
go back to reference Hou X-D, Li N, Zong M-H (2013) Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: visualization of changes in composition and cell wall structure. Biotechnol Bioeng 110:1895–1902PubMedCrossRef Hou X-D, Li N, Zong M-H (2013) Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: visualization of changes in composition and cell wall structure. Biotechnol Bioeng 110:1895–1902PubMedCrossRef
103.
go back to reference Liu Q-P, Hou X-D, Li N, Zong M-H (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307CrossRef Liu Q-P, Hou X-D, Li N, Zong M-H (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307CrossRef
104.
go back to reference Ninomiya K, Yamauchi T, Kobayashi M, Ogino C, Shimizu N, Takahashi K (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29CrossRef Ninomiya K, Yamauchi T, Kobayashi M, Ogino C, Shimizu N, Takahashi K (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29CrossRef
105.
go back to reference Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K (2015) Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour Technol 176:169–174PubMedCrossRef Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K (2015) Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour Technol 176:169–174PubMedCrossRef
106.
go back to reference Hou XD, Li N, Zong MH (2013) Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Bioresour Technol 136:469–474PubMedCrossRef Hou XD, Li N, Zong MH (2013) Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Bioresour Technol 136:469–474PubMedCrossRef
107.
go back to reference Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Damlin P, Hedenström M, Mikkola J-P (2012) Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung 66:809–815CrossRef Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Damlin P, Hedenström M, Mikkola J-P (2012) Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung 66:809–815CrossRef
108.
go back to reference Eta V, Mikkola J-P (2016) Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465PubMedCrossRef Eta V, Mikkola J-P (2016) Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465PubMedCrossRef
109.
go back to reference Anugwom I, Eta V, Virtanen P, Mäki-Arvela P, Hedenström M, Hummel M, Sixta H, Mikkola J-P (2014) Switchable ionic liquids as delignification solvents for lignocellulosic materials. ChemSusChem 7:1170–1176PubMedCrossRef Anugwom I, Eta V, Virtanen P, Mäki-Arvela P, Hedenström M, Hummel M, Sixta H, Mikkola J-P (2014) Switchable ionic liquids as delignification solvents for lignocellulosic materials. ChemSusChem 7:1170–1176PubMedCrossRef
110.
go back to reference Brandt A, Chen L, van Dongen BE, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem 17:5019–5034CrossRef Brandt A, Chen L, van Dongen BE, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem 17:5019–5034CrossRef
111.
go back to reference Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRef Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRef
112.
go back to reference Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850CrossRef Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850CrossRef
113.
go back to reference Shill K, Miller K, Clark DS, Blanch HW (2012) A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose. Bioresour Technol 126:290–297. Elsevier LtdPubMedCrossRef Shill K, Miller K, Clark DS, Blanch HW (2012) A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose. Bioresour Technol 126:290–297. Elsevier LtdPubMedCrossRef
114.
go back to reference Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579CrossRef Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579CrossRef
115.
go back to reference Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:1–10CrossRef Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:1–10CrossRef
116.
go back to reference Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z -aspartame in ionic liquid – an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16(6):1129–1131PubMedCrossRef Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z -aspartame in ionic liquid – an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16(6):1129–1131PubMedCrossRef
117.
go back to reference Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107PubMedCrossRef Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107PubMedCrossRef
118.
go back to reference Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182CrossRef Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182CrossRef
119.
go back to reference Zhou N, Zhang Y, Gong X, Wang Q, Ma Y (2012) Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresour Technol 118:512–517PubMedCrossRef Zhou N, Zhang Y, Gong X, Wang Q, Ma Y (2012) Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresour Technol 118:512–517PubMedCrossRef
120.
go back to reference de HFN O, Fares C, Rinaldi R (2015) Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chem Sci 6:5215–5224CrossRef de HFN O, Fares C, Rinaldi R (2015) Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chem Sci 6:5215–5224CrossRef
122.
go back to reference Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072PubMedCrossRef Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072PubMedCrossRef
123.
go back to reference Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541CrossRef Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541CrossRef
124.
go back to reference Yang Q, Wei Z, Xing H, Ren Q (2008) Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun 9:1307–1311CrossRef Yang Q, Wei Z, Xing H, Ren Q (2008) Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun 9:1307–1311CrossRef
125.
go back to reference Amarasekara AS, Wiredu B (2014) Sulfonic acid group functionalized ionic liquid catalyzed hydrolysis of cellulose in water: structure activity relationships. Sustain Energy 2:102–107 Amarasekara AS, Wiredu B (2014) Sulfonic acid group functionalized ionic liquid catalyzed hydrolysis of cellulose in water: structure activity relationships. Sustain Energy 2:102–107
126.
go back to reference Hernoux-Villière A, Lévêque JM, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17. Elsevier B.V.CrossRef Hernoux-Villière A, Lévêque JM, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17. Elsevier B.V.CrossRef
127.
go back to reference Amarasekara AS, Owereh OS (2010) Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun 11:1072–1075CrossRef Amarasekara AS, Owereh OS (2010) Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun 11:1072–1075CrossRef
128.
go back to reference Hsu WH, Lee YY, Peng WH, Wu KCW (2011) Cellulosic conversion in ionic liquids (ILs): effects of H 2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69. Elsevier B.V.CrossRef Hsu WH, Lee YY, Peng WH, Wu KCW (2011) Cellulosic conversion in ionic liquids (ILs): effects of H 2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69. Elsevier B.V.CrossRef
129.
go back to reference Hu L, Sun Y, Lin L (2012) Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Ind Eng Chem Res 51:1099–1104CrossRef Hu L, Sun Y, Lin L (2012) Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Ind Eng Chem Res 51:1099–1104CrossRef
130.
go back to reference Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850PubMedCrossRef Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850PubMedCrossRef
131.
go back to reference Zhao H, Holladay JE, Brown H, Zhang ZC ((2007)) Metal chlorides in ionic liquid solvents convert sugar to 5-hydroxymethyfurfural. Science (80-) 316:1597–1600CrossRef Zhao H, Holladay JE, Brown H, Zhang ZC ((2007)) Metal chlorides in ionic liquid solvents convert sugar to 5-hydroxymethyfurfural. Science (80-) 316:1597–1600CrossRef
132.
go back to reference Tao F, Song H, Chou L (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresour Technol 102:9000–9006PubMedCrossRef Tao F, Song H, Chou L (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresour Technol 102:9000–9006PubMedCrossRef
133.
go back to reference Zhang L, Yu H, Wang P (2013) Solid acids as catalysts for the conversion of d-xylose, xylan and lignocellulosics into furfural in ionic liquid. Bioresour Technol 136:515–521PubMedCrossRef Zhang L, Yu H, Wang P (2013) Solid acids as catalysts for the conversion of d-xylose, xylan and lignocellulosics into furfural in ionic liquid. Bioresour Technol 136:515–521PubMedCrossRef
134.
go back to reference Zhou P, Zhang Z (2016) One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal Sci Technol 6:3694–3712CrossRef Zhou P, Zhang Z (2016) One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal Sci Technol 6:3694–3712CrossRef
135.
go back to reference Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172PubMedCrossRef Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172PubMedCrossRef
136.
go back to reference Peleteiro S, Da C, Lopes AM, Garrote G, Parajó JC, Bogel-Łukasik R (2015) Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Ind Eng Chem Res 54:8368–8373CrossRef Peleteiro S, Da C, Lopes AM, Garrote G, Parajó JC, Bogel-Łukasik R (2015) Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Ind Eng Chem Res 54:8368–8373CrossRef
137.
go back to reference Qu Y, Li L, Wei Q, Huang C, Oleskowicz-Popiel P, Xu J (2016) One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Sci Rep 6:1–7CrossRef Qu Y, Li L, Wei Q, Huang C, Oleskowicz-Popiel P, Xu J (2016) One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Sci Rep 6:1–7CrossRef
138.
go back to reference Ren H, Zhou Y, Liu L (2013) Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol 129:616–619PubMedCrossRef Ren H, Zhou Y, Liu L (2013) Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol 129:616–619PubMedCrossRef
139.
go back to reference Ferreira AM, Morais ES, Leite AC, Mohamadou A, Holmbom B, Holmbom T, Neves BM, Coutinho JAP, Freire MG, Silvestre AJD, Paracchini S, Lecchini S (2017) Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem 19:2626–2635CrossRef Ferreira AM, Morais ES, Leite AC, Mohamadou A, Holmbom B, Holmbom T, Neves BM, Coutinho JAP, Freire MG, Silvestre AJD, Paracchini S, Lecchini S (2017) Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem 19:2626–2635CrossRef
140.
go back to reference Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62PubMedCrossRef Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62PubMedCrossRef
141.
go back to reference Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32:3550–3554PubMedCrossRef Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32:3550–3554PubMedCrossRef
142.
go back to reference Lu C, Wang H, Lv W, Ma C, Lou Z, Xie J, Liu B (2012) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis. Nat Prod Res 26:1842–1847PubMedCrossRef Lu C, Wang H, Lv W, Ma C, Lou Z, Xie J, Liu B (2012) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis. Nat Prod Res 26:1842–1847PubMedCrossRef
143.
go back to reference Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51PubMedCrossRef Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51PubMedCrossRef
144.
go back to reference Tian M, Yan H, Row KH (2009) Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J Chromatogr B Anal Technol Biomed Life Sci 877:738–742CrossRef Tian M, Yan H, Row KH (2009) Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J Chromatogr B Anal Technol Biomed Life Sci 877:738–742CrossRef
145.
go back to reference Tian M, Row KH (2011) SPE of tanshinones from salvia miltiorrhiza bunge by using imprinted functionalized ionic liquid-modified silica. Chromatographia 73:25–31CrossRef Tian M, Row KH (2011) SPE of tanshinones from salvia miltiorrhiza bunge by using imprinted functionalized ionic liquid-modified silica. Chromatographia 73:25–31CrossRef
146.
go back to reference Wang M, Wang J, Zhang Y, Xia Q, Bi W, Yang X, Chen DDY (2016) Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. J Chromatogr A 1443:262–266PubMedCrossRef Wang M, Wang J, Zhang Y, Xia Q, Bi W, Yang X, Chen DDY (2016) Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. J Chromatogr A 1443:262–266PubMedCrossRef
147.
go back to reference Tian M, Bi W, Row KH (2009) Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent. J Sep Sci 32:4033–4039PubMedCrossRef Tian M, Bi W, Row KH (2009) Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent. J Sep Sci 32:4033–4039PubMedCrossRef
148.
go back to reference Bi W, Zhou J, Row KH (2012) Solid phase extraction of three phenolic acids from Saliconia Herbacel L. by different ionic liquids. J Liq Chromatogr Relat Technol 35:723–736CrossRef Bi W, Zhou J, Row KH (2012) Solid phase extraction of three phenolic acids from Saliconia Herbacel L. by different ionic liquids. J Liq Chromatogr Relat Technol 35:723–736CrossRef
149.
go back to reference Bi W, Tian M, Row KH (2012) Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid. J Chromatogr B Analyt Technol Biomed Life Sci 880:108–113PubMedCrossRef Bi W, Tian M, Row KH (2012) Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid. J Chromatogr B Analyt Technol Biomed Life Sci 880:108–113PubMedCrossRef
150.
go back to reference Bi W, Tian M, Row KH (2010) Solid-phase extraction of matrine and oxymatrine from Sophora flavescens ait using amino-imidazolium polymer. J Sep Sci 33:1739–1745PubMedCrossRef Bi W, Tian M, Row KH (2010) Solid-phase extraction of matrine and oxymatrine from Sophora flavescens ait using amino-imidazolium polymer. J Sep Sci 33:1739–1745PubMedCrossRef
151.
go back to reference Tian M, Yan H, Row KH (2010) Solid-phase extraction of caffeine and theophylline from green tea by a new ionic liquid-modified functional polymer sorbent. Anal Lett 43:110–118CrossRef Tian M, Yan H, Row KH (2010) Solid-phase extraction of caffeine and theophylline from green tea by a new ionic liquid-modified functional polymer sorbent. Anal Lett 43:110–118CrossRef
152.
go back to reference Li S, He C, Liu H, Li K, Liu F (2005) Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J Chromatogr B Analyt Technol Biomed Life Sci 826:58–62PubMedCrossRef Li S, He C, Liu H, Li K, Liu F (2005) Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J Chromatogr B Analyt Technol Biomed Life Sci 826:58–62PubMedCrossRef
153.
go back to reference Freire MG, Neves CMSS, Marrucho IM, Canongia Lopes JN, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715CrossRef Freire MG, Neves CMSS, Marrucho IM, Canongia Lopes JN, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715CrossRef
154.
go back to reference Cláudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002CrossRef Cláudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002CrossRef
155.
go back to reference Tan Z j, Li F f, Xu X l, Xing J m (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393CrossRef Tan Z j, Li F f, Xu X l, Xing J m (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393CrossRef
156.
go back to reference Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12:1023–1028CrossRef Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12:1023–1028CrossRef
157.
go back to reference Vijayaraghavan R, Macfarlane DR (2014) CO2-based alkyl carbamate ionic liquids asdistillable extraction solvents. ACS Sustain Chem Eng 2:1724–1728CrossRef Vijayaraghavan R, Macfarlane DR (2014) CO2-based alkyl carbamate ionic liquids asdistillable extraction solvents. ACS Sustain Chem Eng 2:1724–1728CrossRef
159.
go back to reference George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13:3375CrossRef George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13:3375CrossRef
160.
go back to reference Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588PubMedCrossRef Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588PubMedCrossRef
161.
go back to reference Hong S, Lian H, Pan M, Chen L (2017) Structural changes of lignin after ionic liquid pretreatment. Bioresources 12:3017–3029CrossRef Hong S, Lian H, Pan M, Chen L (2017) Structural changes of lignin after ionic liquid pretreatment. Bioresources 12:3017–3029CrossRef
162.
go back to reference Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J Agric Food Chem 61:635–645PubMedCrossRef Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J Agric Food Chem 61:635–645PubMedCrossRef
163.
go back to reference Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18:834–841CrossRef Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18:834–841CrossRef
164.
go back to reference De Gregorio GF, Prado R, Vriamont C, Erdocia X, Labidi J, Hallett JPJP, Welton T (2016) Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain Chem Eng 4:6031–6036CrossRef De Gregorio GF, Prado R, Vriamont C, Erdocia X, Labidi J, Hallett JPJP, Welton T (2016) Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain Chem Eng 4:6031–6036CrossRef
165.
go back to reference Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73PubMedCrossRef Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73PubMedCrossRef
166.
go back to reference Yinghuai Z, Yuanting KT, Hosmane NS (2013) Applications of ionic liquids in lignin chemistry. In: Canning J, Bandyopadhyay S, Biswas P, Aslund M (eds) Ionic liquids – new aspects for the future. Intech Open, London Yinghuai Z, Yuanting KT, Hosmane NS (2013) Applications of ionic liquids in lignin chemistry. In: Canning J, Bandyopadhyay S, Biswas P, Aslund M (eds) Ionic liquids – new aspects for the future. Intech Open, London
167.
go back to reference Zhu Y, Chuanzhao L, Sudarmadji M, Hui Min N, Biying AO, Maguire JA, Hosmane NS (2012) An efficient and recyclable catalytic system comprising Nanopalladium(0) and a Pyridinium salt of Iron Bis(dicarbollide) for Oxidation of substituted benzyl alcohol and lignin. ChemistryOpen 1:67–70PubMedPubMedCentralCrossRef Zhu Y, Chuanzhao L, Sudarmadji M, Hui Min N, Biying AO, Maguire JA, Hosmane NS (2012) An efficient and recyclable catalytic system comprising Nanopalladium(0) and a Pyridinium salt of Iron Bis(dicarbollide) for Oxidation of substituted benzyl alcohol and lignin. ChemistryOpen 1:67–70PubMedPubMedCentralCrossRef
168.
go back to reference Denicourt-Nowicki A, Léger B, Roucoux A (2011) N-Donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation. Phys Chem Chem Phys 13:13510–13517PubMedCrossRef Denicourt-Nowicki A, Léger B, Roucoux A (2011) N-Donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation. Phys Chem Chem Phys 13:13510–13517PubMedCrossRef
169.
go back to reference Jiang N, Ragauskas AJ (2007) Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. J Org Chem 72:7030–7033PubMedCrossRef Jiang N, Ragauskas AJ (2007) Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. J Org Chem 72:7030–7033PubMedCrossRef
170.
go back to reference Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225CrossRef Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225CrossRef
171.
go back to reference Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297PubMedCrossRef Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297PubMedCrossRef
172.
go back to reference Liu Q, Janssen MHA, van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39CrossRef Liu Q, Janssen MHA, van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39CrossRef
173.
go back to reference Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer (Guildf) 49:2321–2327CrossRef Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer (Guildf) 49:2321–2327CrossRef
174.
go back to reference Idris A, Vijayaraghavan R, Patti AF, Macfarlane DR (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894CrossRef Idris A, Vijayaraghavan R, Patti AF, Macfarlane DR (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894CrossRef
175.
go back to reference Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRef Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRef
176.
go back to reference Yamazaki S, Takegawa A, Kaneko Y, ichi KJ, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70CrossRef Yamazaki S, Takegawa A, Kaneko Y, ichi KJ, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70CrossRef
177.
go back to reference Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRef Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRef
178.
go back to reference Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704CrossRef
179.
go back to reference Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574PubMedCrossRef Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574PubMedCrossRef
180.
go back to reference Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63PubMedCrossRef Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63PubMedCrossRef
181.
go back to reference Xia G, Wan J, Zhang J, Zhang X, Xu L, Wu J, He J, Zhang J (2016) Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr Polym 151:223–229PubMedCrossRef Xia G, Wan J, Zhang J, Zhang X, Xu L, Wu J, He J, Zhang J (2016) Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr Polym 151:223–229PubMedCrossRef
182.
go back to reference Pang J, Wu M, Zhang Q, Tan X, Xu F, Zhang X, Sun R (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78PubMedCrossRef Pang J, Wu M, Zhang Q, Tan X, Xu F, Zhang X, Sun R (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78PubMedCrossRef
183.
go back to reference Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039PubMedCrossRef Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039PubMedCrossRef
184.
go back to reference Mu L, Shi Y, Guo X, Ji T, Chen L, Yuan R, Brisbin L, Wang H, Zhu J (2015) Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv 5:66067–66072CrossRef Mu L, Shi Y, Guo X, Ji T, Chen L, Yuan R, Brisbin L, Wang H, Zhu J (2015) Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv 5:66067–66072CrossRef
185.
go back to reference Younesi-Kordkheili H, Pizzi A (2016) A comparison between lignin modified by ionic liquids and glyoxalated lignin as modifiers of urea-formaldehyde resin. J Adhes 0:1–11 Younesi-Kordkheili H, Pizzi A (2016) A comparison between lignin modified by ionic liquids and glyoxalated lignin as modifiers of urea-formaldehyde resin. J Adhes 0:1–11
186.
go back to reference Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRefPubMed Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRefPubMed
187.
go back to reference Clough MT (2017) Organic electrolyte solutions as versatile media for the dissolution and regeneration of cellulose. Green Chem 19:4754–4768CrossRef Clough MT (2017) Organic electrolyte solutions as versatile media for the dissolution and regeneration of cellulose. Green Chem 19:4754–4768CrossRef
188.
go back to reference Xu F, Sun J, Konda NVSNM, Shi J, Dutta T, Scown CD, Simmons BA, Singh S (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049CrossRef Xu F, Sun J, Konda NVSNM, Shi J, Dutta T, Scown CD, Simmons BA, Singh S (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049CrossRef
Metadata
Title
Use of Ionic Liquids for the Biorefinery
Authors
Raquel Prado
Lisa Weigand
Tom Welton
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1003