Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Metallurgist 1-2/2022

02-07-2022

Use of Silicon Carbide Materials in Reduction Smelting of Metallic Silicon and Siliceous Ferroalloys

Authors: K. S. Elkin, A. V. Sivtsov, D. K. Elkin, A. I. Karlina

Published in: Metallurgist | Issue 1-2/2022

Login to get access
share
SHARE

Abstract

Industrial implementation of the method of smelting industrial silicon with some fraction of the reducing agent replaced with silicon carbide is exemplified. The prospects for using this method to increase the efficiency of the reduction process and the furnace output are shown. The specific consumption of electricity and the amount of greenhouse gases decrease. Additives have a beneficial effect on the electrical efficiency of the furnace by stabilizing it, thus reducing the number of process control errors.
Literature
1.
go back to reference V. P. Nakhabin, V. I. Kulinich, V. P. Vorob’ev, et al., “Smelting of ferrochrome silicon using char and electrode-graphitization waste,” Byull. NTI: Chern. Metallurg., No. 16, 21–27 (1974). V. P. Nakhabin, V. I. Kulinich, V. P. Vorob’ev, et al., “Smelting of ferrochrome silicon using char and electrode-graphitization waste,” Byull. NTI: Chern. Metallurg., No. 16, 21–27 (1974).
2.
go back to reference V. P. Vorob’ev, “Carborundum-bearing carbon reducing agents in silicon and silicon-ferroalloy production,” Steel in Transl., 45, No. 6, 439–442 (2015). CrossRef V. P. Vorob’ev, “Carborundum-bearing carbon reducing agents in silicon and silicon-ferroalloy production,” Steel in Transl., 45, No. 6, 439–442 (2015). CrossRef
3.
go back to reference V. P. Vorob’ev, “Physicochemical classification of carbon-based reducing agents in electrometallurgy,” Steel in Transl., 45, No. 1, 63–72 (2015). CrossRef V. P. Vorob’ev, “Physicochemical classification of carbon-based reducing agents in electrometallurgy,” Steel in Transl., 45, No. 1, 63–72 (2015). CrossRef
4.
go back to reference V. P. Vorob’ev, “Carborundum-bearing reducing agents in high-silicon alloy production,” Steel in Transl., 47, No. 10, 688–690 (2017). CrossRef V. P. Vorob’ev, “Carborundum-bearing reducing agents in high-silicon alloy production,” Steel in Transl., 47, No. 10, 688–690 (2017). CrossRef
5.
go back to reference K. S. Elkin, D. K. Elkin, O. B. Ivanov, et al., Method of Smelting Industrial Silicon [in Russian], Patent 2570153 RF, IPC C01B33/025, 2014135364; Appl. 29 Aug., 2014; Publ. Oct. 12, 2015; Byull. No. 34. K. S. Elkin, D. K. Elkin, O. B. Ivanov, et al., Method of Smelting Industrial Silicon [in Russian], Patent 2570153 RF, IPC C01B33/025, 2014135364; Appl. 29 Aug., 2014; Publ. Oct. 12, 2015; Byull. No. 34.
6.
go back to reference D. K. Elkin, K. S. Elkin, S. V. Koshkin, et al., “Industrial tests of carbide-containing materials in reduction smelting of silicon in ore-smelting electric furnaces,” in: Abstracts of Papers Read at Congr. Nonferrous Metals and Minerals-2015 [in Russian], Krasnoyarsk (2015), p. 616. D. K. Elkin, K. S. Elkin, S. V. Koshkin, et al., “Industrial tests of carbide-containing materials in reduction smelting of silicon in ore-smelting electric furnaces,” in: Abstracts of Papers Read at Congr. Nonferrous Metals and Minerals-2015 [in Russian], Krasnoyarsk (2015), p. 616.
7.
go back to reference G. A. Ul’eva, “Electrothermal production of silicon using carbon-containing new-generation reducing agent – Rexil,” Metallurgist, 64, No. 5–6, 404–409 (2020). CrossRef G. A. Ul’eva, “Electrothermal production of silicon using carbon-containing new-generation reducing agent – Rexil,” Metallurgist, 64, No. 5–6, 404–409 (2020). CrossRef
8.
go back to reference V. P. Vorob’ev, Electrometallurgy of Reduction Processes [in Russian], Izd. UrO RAN, Yekaterinburg (2009). V. P. Vorob’ev, Electrometallurgy of Reduction Processes [in Russian], Izd. UrO RAN, Yekaterinburg (2009).
9.
go back to reference A. N. Parade and M. I. Gasik, Electrothermy Nonmetallic Materials [in Russian], Metallurgiya, Moscow (1990). A. N. Parade and M. I. Gasik, Electrothermy Nonmetallic Materials [in Russian], Metallurgiya, Moscow (1990).
10.
go back to reference A. V. Sivtsov, K. S. Yolkin, I. M. Kashlev, and A. I. Karlina, “Processes in the charge and hearth zones of furnace working spaces and problems in controlling the batch dosing mode during the smelting of industrial silicon and high-silicon ferroalloys,” Metallurgist, 64, No. 5–6, 396–403 (2020). CrossRef A. V. Sivtsov, K. S. Yolkin, I. M. Kashlev, and A. I. Karlina, “Processes in the charge and hearth zones of furnace working spaces and problems in controlling the batch dosing mode during the smelting of industrial silicon and high-silicon ferroalloys,” Metallurgist, 64, No. 5–6, 396–403 (2020). CrossRef
11.
go back to reference A. V. Sivtsov, K. S. Elkin, V. A. Pan’kov, and A. I. Karlina, “Specific features of the electric mode of the technological process of smelting of commercial silicon,” Metallurgist, 64, No. 9–10, 923–930 (2021). CrossRef A. V. Sivtsov, K. S. Elkin, V. A. Pan’kov, and A. I. Karlina, “Specific features of the electric mode of the technological process of smelting of commercial silicon,” Metallurgist, 64, No. 9–10, 923–930 (2021). CrossRef
12.
go back to reference Y. A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir, “Effect of carbide configuration on the current distribution in submerged arc furnaces for silicon production—A modelling approach,” in: L. Nastac, K. Pericleous, A. Sabau, L. Zhang, and B. Thomas (editors), Proc. CFD Modeling and Simulation in Mat., TMS 2018. The Minerals, Metals & Materials Ser., Springer, Cham (2018); https://​doi.​org/​10.​1007/​978-3-319-72059-3_​17. Y. A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir, “Effect of carbide configuration on the current distribution in submerged arc furnaces for silicon production—A modelling approach,” in: L. Nastac, K. Pericleous, A. Sabau, L. Zhang, and B. Thomas (editors), Proc. CFD Modeling and Simulation in Mat., TMS 2018. The Minerals, Metals & Materials Ser., Springer, Cham (2018); https://​doi.​org/​10.​1007/​978-3-319-72059-3_​17.
13.
go back to reference M. Tangstad, M. Ksiazek, and J. E. Andersen, “Zones and materials in the Si furnace,” in: Proc. Silicon for the Chemical and Solar Industry XII, Trondheim, Norway (2014), pp. 24–27. M. Tangstad, M. Ksiazek, and J. E. Andersen, “Zones and materials in the Si furnace,” in: Proc. Silicon for the Chemical and Solar Industry XII, Trondheim, Norway (2014), pp. 24–27.
15.
go back to reference O. I. Randin and L. M. Oznobikhin, “Reactivity of carbon materials in reduction electric smelting of silicon,” Vest. IrGTU, No. 8, 144–147 (2011). O. I. Randin and L. M. Oznobikhin, “Reactivity of carbon materials in reduction electric smelting of silicon,” Vest. IrGTU, No. 8, 144–147 (2011).
Metadata
Title
Use of Silicon Carbide Materials in Reduction Smelting of Metallic Silicon and Siliceous Ferroalloys
Authors
K. S. Elkin
A. V. Sivtsov
D. K. Elkin
A. I. Karlina
Publication date
02-07-2022
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01313-2

Other articles of this Issue 1-2/2022

Metallurgist 1-2/2022 Go to the issue

Premium Partners