Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 1/2022

06-07-2022 | Original Paper

Using a nanoscale technology for designing fault-tolerant 2:1 multiplexer based on a majority gate

Authors: Rongyi He, Xiaoqun Wang, Kairui Gao

Published in: Photonic Network Communications | Issue 1/2022

Login to get access
share
SHARE

Abstract

In today’s environment, digital technology and digital computing are unavoidable components of the creation of electronic gadgets. Quantum-dot cellular automata, or QCA, is a new paradigm for realizing digital logic on the nanoscale. QCA technology is a type of nanotechnology that is used to construct computational circuits. Due to its low latency and area consumption, it can be a promising technique for overcoming CMOS limitations at the nanoscale. Also, fault-tolerant circuits ensure circuit resilience using dependable circuits in this technology. The multiplexer is one of the essential circuits in computer logic. In the most widely used circuits, the multiplexer is an important and primary component. Therefore, in this paper, using the micro-level polarization of QCA, we attempt to develop a fault-tolerant multiplexer architecture. The study employs fault-tolerant majority gates to create a fault-tolerant 2:1 multiplexer. QCADesigner develops and simulates the proposed multiplexer. The results indicate the efficiency of the proposed design in comparison with other designs.
Literature
1.
go back to reference Yazdeen, A.A., Zeebaree, S.R., Sadeeq, M.M., Kak, S.F., Ahmed, O.M., Zebari, R.R.: FPGA implementations for data encryption and decryption via concurrent and parallel computation: a review. Qubahan Acad. J. 1(2), 8–16 (2021) CrossRef Yazdeen, A.A., Zeebaree, S.R., Sadeeq, M.M., Kak, S.F., Ahmed, O.M., Zebari, R.R.: FPGA implementations for data encryption and decryption via concurrent and parallel computation: a review. Qubahan Acad. J. 1(2), 8–16 (2021) CrossRef
2.
go back to reference Xu, K.: Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31(5), 054001 (2021) CrossRef Xu, K.: Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31(5), 054001 (2021) CrossRef
3.
go back to reference Isaac, R.D.: The future of CMOS technology. IBM J. Res. Dev. 44(3), 369–378 (2000) CrossRef Isaac, R.D.: The future of CMOS technology. IBM J. Res. Dev. 44(3), 369–378 (2000) CrossRef
4.
go back to reference Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996) CrossRef Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996) CrossRef
5.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993) CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993) CrossRef
6.
go back to reference Seyedi, S., Navimipour, N.J., Otsuki, A.: Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics 10(21), 2565 (2021) CrossRef Seyedi, S., Navimipour, N.J., Otsuki, A.: Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics 10(21), 2565 (2021) CrossRef
7.
go back to reference Seyedi, S., Otsuki, A., Navimipour, N.J.: A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology. Electronics 10(15), 1806 (2021) CrossRef Seyedi, S., Otsuki, A., Navimipour, N.J.: A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology. Electronics 10(15), 1806 (2021) CrossRef
8.
go back to reference Afrooz, S., Navimipour, N.J.: An effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata. IET Circuits Devices Syst. 15(2), 168–174 (2021) CrossRef Afrooz, S., Navimipour, N.J.: An effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata. IET Circuits Devices Syst. 15(2), 168–174 (2021) CrossRef
9.
go back to reference Hasani, B., Navimipour, N.J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(3), 993–999 (2021) CrossRef Hasani, B., Navimipour, N.J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(3), 993–999 (2021) CrossRef
10.
go back to reference Sheibani, H., Rahimi, E.: Single-electron fault tolerance in quantum cellular automata majority gate. J. Circuits Syst. Comput. 30(09), 2150168 (2021) CrossRef Sheibani, H., Rahimi, E.: Single-electron fault tolerance in quantum cellular automata majority gate. J. Circuits Syst. Comput. 30(09), 2150168 (2021) CrossRef
11.
go back to reference Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019) CrossRef Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019) CrossRef
12.
go back to reference Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 30(09), 2150168 (2021) Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 30(09), 2150168 (2021)
13.
go back to reference Taheri, Z., Rezai, A., Rashidi, H.: Novel single layer fault tolerance RCA construction for QCA technology. Facta Univ.-Ser.: Electron. Energ. 32(4), 601–613 (2019) CrossRef Taheri, Z., Rezai, A., Rashidi, H.: Novel single layer fault tolerance RCA construction for QCA technology. Facta Univ.-Ser.: Electron. Energ. 32(4), 601–613 (2019) CrossRef
14.
go back to reference Naz, S.F., Ahmed, S., Ko, S.B., Shah, A.P., Sharma, S.: QCA based cost efficient coplanar 1× 4 RAM design with set/reset ability. Int. J. Numer. Modell.: Electron. Netw. Devices Fields 35(1), e2946 (2021) Naz, S.F., Ahmed, S., Ko, S.B., Shah, A.P., Sharma, S.: QCA based cost efficient coplanar 1× 4 RAM design with set/reset ability. Int. J. Numer. Modell.: Electron. Netw. Devices Fields 35(1), e2946 (2021)
15.
go back to reference Song, Z., Xie, G., Cheng, X., Wang, L., Zhang, Y.: An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3397–3401 (2020) Song, Z., Xie, G., Cheng, X., Wang, L., Zhang, Y.: An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3397–3401 (2020)
16.
go back to reference Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and implementation of QCA D-flip-flops and RAM cell using majority gates. J. Circuits Syst. Comput. 28(05), 1950079 (2019) CrossRef Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and implementation of QCA D-flip-flops and RAM cell using majority gates. J. Circuits Syst. Comput. 28(05), 1950079 (2019) CrossRef
17.
go back to reference Heydari, M., Xiaohu, Z., Lai, K.K., Afro, S.: A cost-aware efficient RAM structure based on quantum-dot cellular automata nanotechnology. Int. J. Theor. Phys. 58(12), 3961–3972 (2019) CrossRef Heydari, M., Xiaohu, Z., Lai, K.K., Afro, S.: A cost-aware efficient RAM structure based on quantum-dot cellular automata nanotechnology. Int. J. Theor. Phys. 58(12), 3961–3972 (2019) CrossRef
18.
go back to reference Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017) CrossRef Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017) CrossRef
19.
go back to reference Chaharlang, J. Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi J. Electr. Eng. , vol. 11, no. 2 (2017) Chaharlang, J. Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi J. Electr. Eng. , vol. 11, no. 2 (2017)
20.
go back to reference Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015) CrossRef Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015) CrossRef
21.
go back to reference Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011) CrossRef Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011) CrossRef
22.
go back to reference Seyedi, S., Navimipour, N.J.: Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photonic Netw. Commun., 2021/10/26 2021 Seyedi, S., Navimipour, N.J.: Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photonic Netw. Commun., 2021/10/26 2021
23.
go back to reference Debnath, B, Das, J.C., De, D.: SQCA: symmetric key-based crypto-codec for secure nano-communication using QCA. Photonic Netw. Commun., 2021/10/27 2021 Debnath, B, Das, J.C., De, D.: SQCA: symmetric key-based crypto-codec for secure nano-communication using QCA. Photonic Netw. Commun., 2021/10/27 2021
24.
go back to reference Wu, L., Shen, Z., Ji, Y.: Using nano-scale QCA technology for designing fault-tolerant 2: 1 multiplexer. Analog Integr. Circuits Signal Process. 109(3), 553–562 (2021) CrossRef Wu, L., Shen, Z., Ji, Y.: Using nano-scale QCA technology for designing fault-tolerant 2: 1 multiplexer. Analog Integr. Circuits Signal Process. 109(3), 553–562 (2021) CrossRef
25.
go back to reference Ahmed, S., Naz, S.F., Sharma, S., Ko, S.B.: Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int. J. Commun. Syst. 34(4), e4702 (2021) CrossRef Ahmed, S., Naz, S.F., Sharma, S., Ko, S.B.: Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int. J. Commun. Syst. 34(4), e4702 (2021) CrossRef
26.
go back to reference Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J. Supercomput. 78(2), 1672–1695 (2021) CrossRef Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J. Supercomput. 78(2), 1672–1695 (2021) CrossRef
27.
go back to reference Akbari-Hasanjani, R., Sabbaghi-Nadooshan, R.: Design and simulation of innovative QCA quaternary logic gates. Adv. Theory Simul. 4(9), 2100069 (2021) CrossRef Akbari-Hasanjani, R., Sabbaghi-Nadooshan, R.: Design and simulation of innovative QCA quaternary logic gates. Adv. Theory Simul. 4(9), 2100069 (2021) CrossRef
28.
go back to reference Khan, A., Arya, R.: Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int. Nano Lett. 12(1), 67–77 (2021) CrossRef Khan, A., Arya, R.: Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int. Nano Lett. 12(1), 67–77 (2021) CrossRef
30.
go back to reference Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput. Electr. Eng. 82, 106548 (2020) CrossRef Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput. Electr. Eng. 82, 106548 (2020) CrossRef
31.
go back to reference Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. 27(07), 1850115 (2018) CrossRef Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. 27(07), 1850115 (2018) CrossRef
32.
go back to reference Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In: 22nd IEEE VLSI Test Symposium, 2004. Proceedings, pp. 291–296. IEEE (2004) Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In: 22nd IEEE VLSI Test Symposium, 2004. Proceedings, pp. 291–296. IEEE (2004)
33.
go back to reference Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018) CrossRef Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018) CrossRef
34.
go back to reference Azimi, S., Angizi, S., Moaiyeri, M.H.: Efficient and robust SRAM cell design based on quantum-dot cellular automata. ECS J. Solid State Sci. Technol. 7(3), Q38 (2018) CrossRef Azimi, S., Angizi, S., Moaiyeri, M.H.: Efficient and robust SRAM cell design based on quantum-dot cellular automata. ECS J. Solid State Sci. Technol. 7(3), Q38 (2018) CrossRef
35.
go back to reference Reshi, J.I., Banday, M.T.: Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata (2016) Reshi, J.I., Banday, M.T.: Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata (2016)
36.
go back to reference Deng, F., Xie, G., Zhang, Y., Peng, F., Lv, H.: A novel design and analysis of comparator with XNOR gate for QCA. Microprocess. Microsyst. 55, 131–135 (2017) CrossRef Deng, F., Xie, G., Zhang, Y., Peng, F., Lv, H.: A novel design and analysis of comparator with XNOR gate for QCA. Microprocess. Microsyst. 55, 131–135 (2017) CrossRef
37.
go back to reference Raj, M., Gopalakrishnan, L.: Novel reliable QCA subtractor designs using Clock zone based crossover. In: 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 497–501. IEEE (2019) Raj, M., Gopalakrishnan, L.: Novel reliable QCA subtractor designs using Clock zone based crossover. In: 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 497–501. IEEE (2019)
38.
go back to reference Alamdar, H., Ardeshir, G., Gholami, M.: Using universal nand-nor-inverter gate to design D-latch and D flip-flop in quantum-dot cellular automata nanotechnology. Int. J. Eng. 34(7), 1710–1717 (2021) Alamdar, H., Ardeshir, G., Gholami, M.: Using universal nand-nor-inverter gate to design D-latch and D flip-flop in quantum-dot cellular automata nanotechnology. Int. J. Eng. 34(7), 1710–1717 (2021)
39.
go back to reference Zhang, Y., Deng, F., Cheng, X., Xie, G.: A coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys. 59(2), 484–501 (2020) MATHCrossRef Zhang, Y., Deng, F., Cheng, X., Xie, G.: A coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys. 59(2), 484–501 (2020) MATHCrossRef
40.
go back to reference Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020) CrossRef Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020) CrossRef
41.
go back to reference Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1881–1893 (2005) CrossRef Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1881–1893 (2005) CrossRef
42.
go back to reference Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., Yan, A.: Architecture of cobweb-based redundant TSV for clustered faults. IEEE Trans. Very Large Scale Integr. Syst. 28(7), 1736–1739 (2020) CrossRef Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., Yan, A.: Architecture of cobweb-based redundant TSV for clustered faults. IEEE Trans. Very Large Scale Integr. Syst. 28(7), 1736–1739 (2020) CrossRef
43.
go back to reference Feng, Y., et al.: A 200–225-GHz manifold-coupled multiplexer utilizing metal waveguides. IEEE Trans. Microw. Theory Tech. 69(12), 5327–5333 (2021) CrossRef Feng, Y., et al.: A 200–225-GHz manifold-coupled multiplexer utilizing metal waveguides. IEEE Trans. Microw. Theory Tech. 69(12), 5327–5333 (2021) CrossRef
44.
go back to reference Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput.: Pract. Exp. 32(5), e5548 (2020) CrossRef Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput.: Pract. Exp. 32(5), e5548 (2020) CrossRef
45.
go back to reference Majeed, A.H., AlKaldy, E., Albermany, S.: An energy-efficient RAM cell based on novel majority gate in QCA technology. SN Appl. Sci. 1(11), 1–8 (2019) CrossRef Majeed, A.H., AlKaldy, E., Albermany, S.: An energy-efficient RAM cell based on novel majority gate in QCA technology. SN Appl. Sci. 1(11), 1–8 (2019) CrossRef
46.
go back to reference Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017) CrossRef Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017) CrossRef
47.
go back to reference Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer qca alu using a novel fault-tolerant three-input majority gate. J. Supercomput. , pp. 1–31 (2020) Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer qca alu using a novel fault-tolerant three-input majority gate. J. Supercomput. , pp. 1–31 (2020)
48.
go back to reference Mukhopadhyay, D., Dinda, S., Dutta, P.: Designing and implementation of quantum cellular automata 2: 1 multiplexer circuit. Int. J. Comput. Appl. 25(1), 21–24 (2011) Mukhopadhyay, D., Dinda, S., Dutta, P.: Designing and implementation of quantum cellular automata 2: 1 multiplexer circuit. Int. J. Comput. Appl. 25(1), 21–24 (2011)
49.
go back to reference Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018) CrossRef Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018) CrossRef
50.
go back to reference Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016) CrossRef Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016) CrossRef
51.
go back to reference Jeon, J.-C.: Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J. Supercomput. 77, 1562–1578 (2021) CrossRef Jeon, J.-C.: Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J. Supercomput. 77, 1562–1578 (2021) CrossRef
52.
go back to reference Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues , vol. 8, no. 1 (2011) Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues , vol. 8, no. 1 (2011)
53.
go back to reference Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004) CrossRef Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004) CrossRef
54.
go back to reference Walus, K.: ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, Univ. Calgary, Calgary, Canada, ed, 2002. Walus, K.: ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, Univ. Calgary, Calgary, Canada, ed, 2002.
55.
go back to reference Iqbal, J., Khanday, F., Shah, N.: Design of Quantum-dot Cellular Automata (QCA) based modular 2 n− 1− 2 n MUX-DEMUX. In: IMPACT-2013, pp. 189–193. IEEE (2013) Iqbal, J., Khanday, F., Shah, N.: Design of Quantum-dot Cellular Automata (QCA) based modular 2 n− 1− 2 n MUX-DEMUX. In: IMPACT-2013, pp. 189–193. IEEE (2013)
56.
go back to reference Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014) MATHCrossRef Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014) MATHCrossRef
57.
go back to reference Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015) CrossRef Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015) CrossRef
58.
go back to reference Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata (2017) Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata (2017)
59.
go back to reference Xingjun, L., Zhiwei, S., Hongping, C., Haghighi, M.R.J.: A new design of QCA-based nanoscale multiplexer and its usage in communications. Int. J. Commun Syst 33(4), e4254 (2020) CrossRef Xingjun, L., Zhiwei, S., Hongping, C., Haghighi, M.R.J.: A new design of QCA-based nanoscale multiplexer and its usage in communications. Int. J. Commun Syst 33(4), e4254 (2020) CrossRef
60.
go back to reference Ahmadpour, S.-S., Mosleh, M.: New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Netw. 19, 10–25 (2019) CrossRef Ahmadpour, S.-S., Mosleh, M.: New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Netw. 19, 10–25 (2019) CrossRef
61.
go back to reference Zhang, X., Tang, Y., Zhang, F., Lee, C.S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016) CrossRef Zhang, X., Tang, Y., Zhang, F., Lee, C.S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016) CrossRef
Metadata
Title
Using a nanoscale technology for designing fault-tolerant 2:1 multiplexer based on a majority gate
Authors
Rongyi He
Xiaoqun Wang
Kairui Gao
Publication date
06-07-2022
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2022
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00981-z

Other articles of this Issue 1/2022

Photonic Network Communications 1/2022 Go to the issue