Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

26-05-2022 | Regular Paper

Using big data and federated learning for generating energy efficiency recommendations

Authors: Iraklis Varlamis, Christos Sardianos, Christos Chronis, George Dimitrakopoulos, Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira

Published in: International Journal of Data Science and Analytics

Login to get access
share
SHARE

Abstract

Internet of Things (IoT) devices are becoming popular solutions for smart home and office environments and contribute the most to energy efficiency. The most common implementation of such solutions relies on smart home systems that are hosted on the cloud. They collect data from a multitude of sensors, process it in real-time on the cloud and deliver immediate actions to sets of actuators that are installed locally. In this work, we present the (EM)\(^3\) project (Consumer Engagement towards Energy Saving Behaviour by Means of Exploiting Micro Moments and Mobile Recommendation Systems), which combines data collection, information abstraction, timed recommendations for energy saving actions and automations that promote energy saving in a household or office setup. The advantage of the (EM)\(^3\) project is that each room or office setup is controlled locally on an edge device, thus removing the need to share data to the cloud. The current article details on the data and information processing aspects of the (EM)\(^3\) solution, which efficiently handles thousands of sensor events on a daily basis and provides useful analytics and recommendations to the end user to support habit change. It also demonstrates the scalability of the solution by simulating a simple scenario of distributed data collection and processing on the edge nodes, which takes advantage of federated learning in order to adapt to the needs of multiple users without exposing their privacy.
Footnotes
2
Telegram API is part of Home Assistant. However, any other custom messaging API could be used in its place.
 
8
Two monitors with the auto-standby mode enabled.
 
9
e.g., when she is falsely detected as being away from the office, only because she was sitting still in her office.
 
Literature
1.
go back to reference Ouyang, J., Hokao, K.: Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy Build. 41(7), 711–720 (2009) CrossRef Ouyang, J., Hokao, K.: Energy-saving potential by improving occupants’ behavior in urban residential sector in Hangzhou City, China. Energy Build. 41(7), 711–720 (2009) CrossRef
2.
go back to reference Burger, P., Bezençon, V., Bornemann, B., Brosch, T., Carabias-Hütter, V., Farsi, M., Hille, S.L., Moser, C., Ramseier, C., Samuel, R., et al.: Advances in understanding energy consumption behavior and the governance of its change-outline of an integrated framework. Front. Energy Res. 3, 29 (2015) CrossRef Burger, P., Bezençon, V., Bornemann, B., Brosch, T., Carabias-Hütter, V., Farsi, M., Hille, S.L., Moser, C., Ramseier, C., Samuel, R., et al.: Advances in understanding energy consumption behavior and the governance of its change-outline of an integrated framework. Front. Energy Res. 3, 29 (2015) CrossRef
3.
go back to reference Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016) CrossRef Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016) CrossRef
4.
go back to reference Hu, S., Yan, D., Guo, S., Cui, Y., Dong, B.: A survey on energy consumption and energy usage behavior of households and residential building in urban china. Energy Build. 148, 366–378 (2017) CrossRef Hu, S., Yan, D., Guo, S., Cui, Y., Dong, B.: A survey on energy consumption and energy usage behavior of households and residential building in urban china. Energy Build. 148, 366–378 (2017) CrossRef
5.
go back to reference Alsalemi, A., Sardianos, C., Bensaali, F., Varlamis, I., Amira, A., Dimitrakopoulos, G.: The role of micro-moments: a survey of habitual behavior change and recommender systems for energy saving. IEEE Syst. J. 13, 1–12 (2019) CrossRef Alsalemi, A., Sardianos, C., Bensaali, F., Varlamis, I., Amira, A., Dimitrakopoulos, G.: The role of micro-moments: a survey of habitual behavior change and recommender systems for energy saving. IEEE Syst. J. 13, 1–12 (2019) CrossRef
6.
go back to reference Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016) CrossRef Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016) CrossRef
7.
go back to reference Zhao, H.-X., Magoulès, F.: A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 16(6), 3586–3592 (2012) CrossRef Zhao, H.-X., Magoulès, F.: A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 16(6), 3586–3592 (2012) CrossRef
8.
go back to reference Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan H.B., et al.: Towards federated learning at scale: system design (2019). arXiv preprint arXiv:​1902.​01046 Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan H.B., et al.: Towards federated learning at scale: system design (2019). arXiv preprint arXiv:​1902.​01046
9.
go back to reference Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Interact. 24(1–2), 67–119 (2014) CrossRef Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Interact. 24(1–2), 67–119 (2014) CrossRef
10.
go back to reference Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 199–208. ACM (2012) Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 199–208. ACM (2012)
11.
go back to reference Aman, S., Simmhan, Y., Prasanna, V.K.: Energy management systems: state of the art and emerging trends. IEEE Commun. Mag. 51(1), 114–119 (2013) CrossRef Aman, S., Simmhan, Y., Prasanna, V.K.: Energy management systems: state of the art and emerging trends. IEEE Commun. Mag. 51(1), 114–119 (2013) CrossRef
12.
go back to reference Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016) CrossRef Zhou, K., Yang, S.: Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew. Sustain. Energy Rev. 56, 810–819 (2016) CrossRef
13.
go back to reference Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016) CrossRef Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016) CrossRef
14.
go back to reference Singh, S., Yassine, A.: Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 11(2), 452 (2018) CrossRef Singh, S., Yassine, A.: Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 11(2), 452 (2018) CrossRef
15.
go back to reference Jarrah Nezhad, A., Wijaya, T., Vasirani, M., Aberer, K.: Smartd: smart meter data analytics dashboard. In: e-Energy 2014—Proceedings of the 5th ACM International Conference on Future Energy Systems (2014) Jarrah Nezhad, A., Wijaya, T., Vasirani, M., Aberer, K.: Smartd: smart meter data analytics dashboard. In: e-Energy 2014—Proceedings of the 5th ACM International Conference on Future Energy Systems (2014)
16.
go back to reference Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., Alikarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 63(4), 426–434 (2017) CrossRef Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., Alikarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 63(4), 426–434 (2017) CrossRef
17.
go back to reference Taïk, A., Cherkaoui, S.: Electrical load forecasting using edge computing and federated learning. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020) Taïk, A., Cherkaoui, S.: Electrical load forecasting using edge computing and federated learning. In: ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)
18.
go back to reference Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Towards domestic energy efficiency: using micro-moments for personalized behavior change recommendations. In: 8th Global Conference on Global Warming, Qatar (2019) Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Towards domestic energy efficiency: using micro-moments for personalized behavior change recommendations. In: 8th Global Conference on Global Warming, Qatar (2019)
19.
go back to reference Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Endorsing domestic energy saving behavior using micro-moment classification. Appl. Energy 250, 1302–1311 (2019) CrossRef Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Endorsing domestic energy saving behavior using micro-moment classification. Appl. Energy 250, 1302–1311 (2019) CrossRef
20.
go back to reference Sardianos, C., Varlamis, I., Dimitrakopoulos, G., Anagnostopoulos, D., Alsalemi, A., Bensaali, F., Amira, A.: “i want to... change”: micro-moment based recommendations can change users’ energy habits. In: SMARTGREENS, pp. 30–39 (2019) Sardianos, C., Varlamis, I., Dimitrakopoulos, G., Anagnostopoulos, D., Alsalemi, A., Bensaali, F., Amira, A.: “i want to... change”: micro-moment based recommendations can change users’ energy habits. In: SMARTGREENS, pp. 30–39 (2019)
21.
go back to reference Alsalemi, A., Bensaali, F., Amira, A., Fetais, N., Sardianos, C., Varlamis, I.: Smart energy usage and visualization based on micro-moments. In: Proceedings of SAI Intelligent Systems Conference, pp. 557–566. Springer (2019) Alsalemi, A., Bensaali, F., Amira, A., Fetais, N., Sardianos, C., Varlamis, I.: Smart energy usage and visualization based on micro-moments. In: Proceedings of SAI Intelligent Systems Conference, pp. 557–566. Springer (2019)
22.
go back to reference Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Alsalemi, A., Himeur, Y., Bensaali, F., Amira, A.: The emergence of explainability of intelligent systems: Delivering explainable and personalized recommendations for energy efficiency. Int. J. Intell. Syst. 36(2), 656–680 (2021) CrossRef Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Alsalemi, A., Himeur, Y., Bensaali, F., Amira, A.: The emergence of explainability of intelligent systems: Delivering explainable and personalized recommendations for energy efficiency. Int. J. Intell. Syst. 36(2), 656–680 (2021) CrossRef
23.
go back to reference Sardianos, C., Varlamis, I., Dimitrakopoulos, G., Anagnostopoulos, D., Alsalemi, A., Bensaali, F., Himeur, Y., Amira, A.: Rehab-c: recommendations for energy habits change. Future Gener. Comput. Syst. 112, 394–407 (2020) CrossRef Sardianos, C., Varlamis, I., Dimitrakopoulos, G., Anagnostopoulos, D., Alsalemi, A., Bensaali, F., Himeur, Y., Amira, A.: Rehab-c: recommendations for energy habits change. Future Gener. Comput. Syst. 112, 394–407 (2020) CrossRef
24.
go back to reference Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A.: Data analytics, automations, and micro-moment based recommendations for energy efficiency. In: 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService), pp. 96–103. IEEE (2020) Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A.: Data analytics, automations, and micro-moment based recommendations for energy efficiency. In: 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService), pp. 96–103. IEEE (2020)
25.
go back to reference Alsalemi, A., Himeur, Y., Bensaali, F., Amira, A., Sardianos, C., Chronis, C., Varlamis, I., Dimitrakopoulos, G.: A micro-moment system for domestic energy efficiency analysis. IEEE Syst. J. 15(1), 1256–1263 (2020) CrossRef Alsalemi, A., Himeur, Y., Bensaali, F., Amira, A., Sardianos, C., Chronis, C., Varlamis, I., Dimitrakopoulos, G.: A micro-moment system for domestic energy efficiency analysis. IEEE Syst. J. 15(1), 1256–1263 (2020) CrossRef
26.
go back to reference Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A.: A model for predicting room occupancy based on motion sensor data. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 394–399. IEEE (2020) Sardianos, C., Varlamis, I., Chronis, C., Dimitrakopoulos, G., Himeur, Y., Alsalemi, A., Bensaali, F., Amira, A.: A model for predicting room occupancy based on motion sensor data. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 394–399. IEEE (2020)
27.
go back to reference Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Endorsing domestic energy saving behavior using micro-moment classification. Appl. Energy 250, 1302–1311 (2019) CrossRef Alsalemi, A., Ramadan, M., Bensaali, F., Amira, A., Sardianos, C., Varlamis, I., Dimitrakopoulos, G.: Endorsing domestic energy saving behavior using micro-moment classification. Appl. Energy 250, 1302–1311 (2019) CrossRef
28.
go back to reference Han, Y., Zhang, X.: Robust federated learning via collaborative machine teaching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, No. 04, pp. 4075–4082 (2020) Han, Y., Zhang, X.: Robust federated learning via collaborative machine teaching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, No. 04, pp. 4075–4082 (2020)
29.
go back to reference D’Oca, S., Hong, T.: A data-mining approach to discover patterns of window opening and closing behavior in offices. Build. Environ. 82, 726–739 (2014) CrossRef D’Oca, S., Hong, T.: A data-mining approach to discover patterns of window opening and closing behavior in offices. Build. Environ. 82, 726–739 (2014) CrossRef
30.
go back to reference Duhigg, C.: The Power of Habit: Why We Do What We Do and How to Change. Random House, New York (2013) Duhigg, C.: The Power of Habit: Why We Do What We Do and How to Change. Random House, New York (2013)
31.
go back to reference Kim, B., Lee, S., Trivedi, A.R., Song, W.J.: Energy-efficient acceleration of deep neural networks on realtime-constrained embedded edge devices. IEEE Access 8(216), 259–270 (2020) Kim, B., Lee, S., Trivedi, A.R., Song, W.J.: Energy-efficient acceleration of deep neural networks on realtime-constrained embedded edge devices. IEEE Access 8(216), 259–270 (2020)
Metadata
Title
Using big data and federated learning for generating energy efficiency recommendations
Authors
Iraklis Varlamis
Christos Sardianos
Christos Chronis
George Dimitrakopoulos
Yassine Himeur
Abdullah Alsalemi
Faycal Bensaali
Abbes Amira
Publication date
26-05-2022
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00331-2

Premium Partner