Skip to main content
Top

2020 | OriginalPaper | Chapter

Using Diffusion Network Analytics to Examine and Support Knowledge Construction in CSCL Settings

Authors : Mohammed Saqr, Olga Viberg

Published in: Addressing Global Challenges and Quality Education

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The analysis of CSCL needs to offer actionable insights about how knowledge construction between learners is built, facilitated and/or constrained, with the overall aim to help support knowledge (co-)construction. To address this, the present study demonstrates how network analysis - in a form of diffusion-based visual and quantitative information exchange metrics - can be effectively employed to: 1. visually map the learner networks of information exchange, 2. identify and define student roles in the collaborative process, and 3. test the association between information exchange metrics and performance. The analysis is based on a dataset of a course with a CSCL module (n = 129 students). For each student, we calculated the centrality indices that reflect the roles played in information exchange, range of influence, and connectivity. Students’ roles were analysed employing unsupervised clustering techniques to identify groups that share similar characteristics in regard to their emerging roles in the information exchange process. The results of this study have proved that diffusion-based visual and quantitative metrics can be effectively employed and are valuable methods to visually map the student networks of information exchange as well as to detect and define students’ roles in the collaborative learning process. Furthermore, the results demonstrated a positive and statistically significant association between diffusion metrics and academic performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agelii, A., Grönlund, Å., Viberg, O.: Disseminating digital, science-based innovation in education – a leadership challenge. J. Educ. Change 24, 3021–3039 (2019) Agelii, A., Grönlund, Å., Viberg, O.: Disseminating digital, science-based innovation in education – a leadership challenge. J. Educ. Change 24, 3021–3039 (2019)
5.
go back to reference Chatman, E.: Diffusion theory: a review and test of a conceptual model in information diffusion. J. Am. Soc. Inf. Sci. 37, 377–386 (1986)CrossRef Chatman, E.: Diffusion theory: a review and test of a conceptual model in information diffusion. J. Am. Soc. Inf. Sci. 37, 377–386 (1986)CrossRef
7.
go back to reference Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006) Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006)
8.
go back to reference Dillenbourg, P.: Collaborative Learning: Cognitive and Computational Approaches. Emerald Group, New York (1999) Dillenbourg, P.: Collaborative Learning: Cognitive and Computational Approaches. Emerald Group, New York (1999)
9.
go back to reference Faghani, M., Nguyen, U.: A study of XSS worm propagation and detection mechanisms in online social networks. IEEE Trans. Inf. Forensics Secur. 8(1), 1815–1826 (2013)CrossRef Faghani, M., Nguyen, U.: A study of XSS worm propagation and detection mechanisms in online social networks. IEEE Trans. Inf. Forensics Secur. 8(1), 1815–1826 (2013)CrossRef
11.
go back to reference Gu, X., Mason, J.: Are they thinking differently: a cross-cultural study on the relationship of thinking styles and emerging roles in computer-supported collaborative learning. Educ. Technol. Soc. 20(1), 13–24 (2017) Gu, X., Mason, J.: Are they thinking differently: a cross-cultural study on the relationship of thinking styles and emerging roles in computer-supported collaborative learning. Educ. Technol. Soc. 20(1), 13–24 (2017)
13.
go back to reference Hadwin, A., Järvelä, S., Miller, M.: Self-regulation, co-regulation, and shared regulation in collaborative learning environments. In: Schunk, D.H., Greene, J.A. (eds.) Educational Psychology Handbook Series. Handbook of Self-Regulation of Learning and Performance. pp. 83–106. Routledge/Taylor & Francis Group (2018) Hadwin, A., Järvelä, S., Miller, M.: Self-regulation, co-regulation, and shared regulation in collaborative learning environments. In: Schunk, D.H., Greene, J.A. (eds.) Educational Psychology Handbook Series. Handbook of Self-Regulation of Learning and Performance. pp. 83–106. Routledge/Taylor & Francis Group (2018)
14.
go back to reference Hare, A.: Types of roles in small groups: a bit of history and a current perspective. Small Group Res. 25, 443–448 (1994)CrossRef Hare, A.: Types of roles in small groups: a bit of history and a current perspective. Small Group Res. 25, 443–448 (1994)CrossRef
15.
go back to reference Hernández-García, Á., González-González, I., Jiménez-Zarco, A., Chaparro-Peláez, J.: Applying social learning analytics to message boards in online distance learning: a case study. Comput. Hum. Behav. 47, 68–80 (2015)CrossRef Hernández-García, Á., González-González, I., Jiménez-Zarco, A., Chaparro-Peláez, J.: Applying social learning analytics to message boards in online distance learning: a case study. Comput. Hum. Behav. 47, 68–80 (2015)CrossRef
16.
go back to reference Jahnke, I.: Dynamics of social roles in a knowledge management community. Comput. Hum. Behav. 26, 533–546 (2010)CrossRef Jahnke, I.: Dynamics of social roles in a knowledge management community. Comput. Hum. Behav. 26, 533–546 (2010)CrossRef
19.
go back to reference Jermann, P., Soller, A., Lesgold, A.: Computer software support for CSCL. In: Strijbos, J.W., Kirschner, P.A., Martens, R.L. (eds.) What we know about CSCL and Implementing it in Higher Education, pp. 141–166. Kluwer Academic Publishers, Norwell (2004) Jermann, P., Soller, A., Lesgold, A.: Computer software support for CSCL. In: Strijbos, J.W., Kirschner, P.A., Martens, R.L. (eds.) What we know about CSCL and Implementing it in Higher Education, pp. 141–166. Kluwer Academic Publishers, Norwell (2004)
20.
go back to reference Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-Learning personalization based on web usage mining techniques and information retrieval. J. Educ. Technol. Soc. 12(4), 30–42 (2009) Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-Learning personalization based on web usage mining techniques and information retrieval. J. Educ. Technol. Soc. 12(4), 30–42 (2009)
21.
go back to reference Kim, D., Yoon, M., Jo, I.-H., Branch, R.: Learning analytics to support self-regulated learning in asychnornous online courses: a case study at a women’s university in South Korea. Comput. Educ. 127, 233–251 (2018)CrossRef Kim, D., Yoon, M., Jo, I.-H., Branch, R.: Learning analytics to support self-regulated learning in asychnornous online courses: a case study at a women’s university in South Korea. Comput. Educ. 127, 233–251 (2018)CrossRef
22.
go back to reference Kirschner, P.A., Beers, P.J., Boshuizen, H.P.A., Gijselaers, W.H.: Coercing shared knowledge in collaborative learning environments. Comput. Hum. Behav. 24, 403–420 (2008)CrossRef Kirschner, P.A., Beers, P.J., Boshuizen, H.P.A., Gijselaers, W.H.: Coercing shared knowledge in collaborative learning environments. Comput. Hum. Behav. 24, 403–420 (2008)CrossRef
30.
go back to reference Saqr, M., Alamro, A.: The role of social network analysis as a learning analytics tool in online problem based learning. BMC Med. Educ. 19, 1–11 (2019)CrossRef Saqr, M., Alamro, A.: The role of social network analysis as a learning analytics tool in online problem based learning. BMC Med. Educ. 19, 1–11 (2019)CrossRef
31.
32.
go back to reference Strijbos, J., Weinberger, A.: Emerging and scripted roles in computer-supported collaborative learning. Comput. Hum. Behav. 26(4), 491–494 (2010)CrossRef Strijbos, J., Weinberger, A.: Emerging and scripted roles in computer-supported collaborative learning. Comput. Hum. Behav. 26(4), 491–494 (2010)CrossRef
33.
go back to reference Sumith, N., Annappa, B., Bhattacharya, S.: Influence maximization in large social networks: Heuristics, models and parameters. Fut. Gener. Comput. Syst. 89, 777–790 (2018)CrossRef Sumith, N., Annappa, B., Bhattacharya, S.: Influence maximization in large social networks: Heuristics, models and parameters. Fut. Gener. Comput. Syst. 89, 777–790 (2018)CrossRef
34.
go back to reference Sung, Y.-T., Yang, J.-M., Lee, H.-Y.: The effects of mobile-computer-supported collaborative learning and critical synthesis. Rev. Educ. Res. 87(4), 768–805 (2017)CrossRef Sung, Y.-T., Yang, J.-M., Lee, H.-Y.: The effects of mobile-computer-supported collaborative learning and critical synthesis. Rev. Educ. Res. 87(4), 768–805 (2017)CrossRef
35.
go back to reference Viberg, O., Mavroudi, A., Fernaeus, Y., Bogdan, C., Laaksolahti, J.: Reducing free riding: class – a system for collaborative learning assessment. In: Popescu, E., Belén Gil, A., Lancia, L., Simona Sica, L., Mavroudi, A. (eds.) MIS4TEL 2019. AISC, vol. 1008, pp. 132–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23884-1_17CrossRef Viberg, O., Mavroudi, A., Fernaeus, Y., Bogdan, C., Laaksolahti, J.: Reducing free riding: class – a system for collaborative learning assessment. In: Popescu, E., Belén Gil, A., Lancia, L., Simona Sica, L., Mavroudi, A. (eds.) MIS4TEL 2019. AISC, vol. 1008, pp. 132–138. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-23884-1_​17CrossRef
37.
go back to reference Saqr, M., Nouri, J., Fors, U.: Time to focus on the temporal dimension of learning: a learning analytics study of the temporal patterns of students’ interactions and self-regulation. Int. J. Technol. Enhanced Learn. 11(4), 398–412 (2019)CrossRef Saqr, M., Nouri, J., Fors, U.: Time to focus on the temporal dimension of learning: a learning analytics study of the temporal patterns of students’ interactions and self-regulation. Int. J. Technol. Enhanced Learn. 11(4), 398–412 (2019)CrossRef
38.
go back to reference Viberg, O., Khalil, M., Baars, M.: Self-regulated learning and learning analytics in online learning environments: a review of empirical research. In: Proceedings of the 10th International Learning Analytics and Knowledge Conference (LAK 2020), Frankfurt, Germany (2020). https://doi.org/10.1145/3375462.3375483 Viberg, O., Khalil, M., Baars, M.: Self-regulated learning and learning analytics in online learning environments: a review of empirical research. In: Proceedings of the 10th International Learning Analytics and Knowledge Conference (LAK 2020), Frankfurt, Germany (2020). https://​doi.​org/​10.​1145/​3375462.​3375483
Metadata
Title
Using Diffusion Network Analytics to Examine and Support Knowledge Construction in CSCL Settings
Authors
Mohammed Saqr
Olga Viberg
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-57717-9_12

Premium Partner