Skip to main content
Top
Published in: Optical and Quantum Electronics 2/2020

01-02-2020

Using graphene to tune vertical-cavity surface-emitting lasers

Author: Omar Qasaimeh

Published in: Optical and Quantum Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel approach for enhancing the tuning speed of vertical-cavity surface-emitting lasers (VCSEL) is presented. The design is based on incorporating gated multiple graphene flakes in one of the DBR layers that is adjacent to the cavity to tune the resonance wavelength of the device. Different design structures have been studied. By applying a gate voltage on the graphene flakes, the effective refractive index of the cavity is changed which detunes the resonant wavelength of the cavity. The unique features of graphene ensure fast tuning speed. Our analysis on a 1.3 μm InAs quantum dot-based VCSELs predicts that inserting double graphene flakes separated by 20 nm SiO2 spacer in a λ/4 layer yields ~ 0.6 nm wavelength tuning range and ~ 6.3 GHz tuning speed. The threshold current variation within the tuning range is less than 43%. The wavelength tuning range can be increased to 1.2 nm by using 4 graphene flakes which reduces the tuning speed to ~ 1.9 GHz and increases the threshold current variation to 84%. In another design, we find that inserting 4 graphene flakes separated by 80 nm SiO2 spacer in a 3λ/4 layer yields ~ 0.8 nm tuning range and 14.5 GHz tuning speed. For fine wavelength tuning, the device is capable of providing > 39 GHz tuning speed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ababneh, J., Qasaimeh, O.: Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Trans. Electron Dev. 53(7), 1543–1550 (2006)ADSCrossRef Ababneh, J., Qasaimeh, O.: Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks. IEEE Trans. Electron Dev. 53(7), 1543–1550 (2006)ADSCrossRef
go back to reference Barzegar-Parizi, S., Khavasi, A.: Designing dual-band absorbers by graphene/metallic metasurfaces. IEEE J. Quantum Electron. 55(2), 7300108(1)–7300108(8) (2019)CrossRef Barzegar-Parizi, S., Khavasi, A.: Designing dual-band absorbers by graphene/metallic metasurfaces. IEEE J. Quantum Electron. 55(2), 7300108(1)–7300108(8) (2019)CrossRef
go back to reference Bienstman, P., Baets, R., Vukusic, J., Larsson, A., Noble, M., Brunner, M., Gulden, K., Debernardi, P., Fratta, L., Bava, G., Wenzel, H., Klein, B., Conradi, O., Pregla, R., Riyopoulos, S., Seurin, J.-F., Chuang, S.: Comparison of optical VCSEL models on the simulation of oxide-confined devices. IEEE J. Quantum Electron. 37(12), 1618–1631 (2001)ADSCrossRef Bienstman, P., Baets, R., Vukusic, J., Larsson, A., Noble, M., Brunner, M., Gulden, K., Debernardi, P., Fratta, L., Bava, G., Wenzel, H., Klein, B., Conradi, O., Pregla, R., Riyopoulos, S., Seurin, J.-F., Chuang, S.: Comparison of optical VCSEL models on the simulation of oxide-confined devices. IEEE J. Quantum Electron. 37(12), 1618–1631 (2001)ADSCrossRef
go back to reference Burak, D., Binder, R.: Cold-cavity vectorial eigenmodes of VCSEL’s. IEEE J. Quantum Electron. 33(7), 1205–1215 (1997)ADSCrossRef Burak, D., Binder, R.: Cold-cavity vectorial eigenmodes of VCSEL’s. IEEE J. Quantum Electron. 33(7), 1205–1215 (1997)ADSCrossRef
go back to reference Cai, H., Liu, B., Zhang, X., Liu, A., Tamil, J., Bourouian, T., Zhang, Q.: A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity. Opt. Express 16(21), 16670–16679 (2008)ADSCrossRef Cai, H., Liu, B., Zhang, X., Liu, A., Tamil, J., Bourouian, T., Zhang, Q.: A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity. Opt. Express 16(21), 16670–16679 (2008)ADSCrossRef
go back to reference Chen, X., Wang, Y., Xiang, Y., Jiang, G., Wang, L., Bao, Q., Zhang, H., Liu, Y., Wen, S., Fan, D.: A broadband optical modulator based on a graphene hybrid plasmonic waveguide. IEEE J. Lightw. Technol. 34(21), 4948–4953 (2016)ADSCrossRef Chen, X., Wang, Y., Xiang, Y., Jiang, G., Wang, L., Bao, Q., Zhang, H., Liu, Y., Wen, S., Fan, D.: A broadband optical modulator based on a graphene hybrid plasmonic waveguide. IEEE J. Lightw. Technol. 34(21), 4948–4953 (2016)ADSCrossRef
go back to reference Ghosh, S., Lenihan, A., Dutt, M., Qasaimeh, O., Steel, D., Bhattacharya, P.: Nonlinear optical and electro-optic properties of InAs/GaAs self-organized quantum dots. J. Vac. Sci. Technol. B 19(4), 1455–1458 (2001)CrossRef Ghosh, S., Lenihan, A., Dutt, M., Qasaimeh, O., Steel, D., Bhattacharya, P.: Nonlinear optical and electro-optic properties of InAs/GaAs self-organized quantum dots. J. Vac. Sci. Technol. B 19(4), 1455–1458 (2001)CrossRef
go back to reference Ghosh, S., Mandal, D., Chandra, A., Bhaktha, S.: Effect of laser irradiation on graphene oxide integrated TE-pass waveguide polarizer. IEEE J. Lightw. Technol. 37(10), 2380–2385 (2019)ADSCrossRef Ghosh, S., Mandal, D., Chandra, A., Bhaktha, S.: Effect of laser irradiation on graphene oxide integrated TE-pass waveguide polarizer. IEEE J. Lightw. Technol. 37(10), 2380–2385 (2019)ADSCrossRef
go back to reference Gierl, C., Gründl, T., Zogal, K., Davani, H., Grasse, C., Böhm, G., Küppers, F., Meissner, P., Amann, M.-C.: Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning. Electron. Lett. 47(22), 1243–1244 (2011)CrossRef Gierl, C., Gründl, T., Zogal, K., Davani, H., Grasse, C., Böhm, G., Küppers, F., Meissner, P., Amann, M.-C.: Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning. Electron. Lett. 47(22), 1243–1244 (2011)CrossRef
go back to reference Huang, P., Chen, W.-L., Peng, T.-W., Su, C.-Y., Yeh, C.-Y., Cheng, W.-H.: Investigation of saturable and reverse saturable absorptions for graphene by Z-scan technique. IEEE Photon. Technol. Lett. 27(17), 1791–1794 (2015)ADSCrossRef Huang, P., Chen, W.-L., Peng, T.-W., Su, C.-Y., Yeh, C.-Y., Cheng, W.-H.: Investigation of saturable and reverse saturable absorptions for graphene by Z-scan technique. IEEE Photon. Technol. Lett. 27(17), 1791–1794 (2015)ADSCrossRef
go back to reference Ji, L., Gao, Y., Xu, Y., Sun, X., Wu, C., Wu, Y., Zhang, D.: High figure of merit electro-optic modulator based on graphene on silicon dual-slot waveguide. IEEE J. Quantum Electron. 54(6), 5200107(1)–5200107(7) (2018)CrossRef Ji, L., Gao, Y., Xu, Y., Sun, X., Wu, C., Wu, Y., Zhang, D.: High figure of merit electro-optic modulator based on graphene on silicon dual-slot waveguide. IEEE J. Quantum Electron. 54(6), 5200107(1)–5200107(7) (2018)CrossRef
go back to reference Kotlyar, M., O’Faolain, L., Krysa, A., Krauss, T.: Electrooptic tuning of InP-based microphotonic Fabry–Pérot filters. IEEE J. Lightw. Technol. 23(6), 2169–2174 (2005)ADSCrossRef Kotlyar, M., O’Faolain, L., Krysa, A., Krauss, T.: Electrooptic tuning of InP-based microphotonic Fabry–Pérot filters. IEEE J. Lightw. Technol. 23(6), 2169–2174 (2005)ADSCrossRef
go back to reference Li, Y., Gao, L., Zhu, T., Cao, Y., Liu, M., Qu, D., Qiu, F., Huang, X.: Graphene-assisted all-fiber optical-controllable laser. IEEE J. Sel. Top. Quantum Electron. 24(3), 0901709(1)–0901709(9) (2018)CrossRef Li, Y., Gao, L., Zhu, T., Cao, Y., Liu, M., Qu, D., Qiu, F., Huang, X.: Graphene-assisted all-fiber optical-controllable laser. IEEE J. Sel. Top. Quantum Electron. 24(3), 0901709(1)–0901709(9) (2018)CrossRef
go back to reference Li, Y., Huang, L., Huang, S., Gao, L., Yin, G., Lan, T., Cao, Y., Ikechukwu, I., Zhu, T.: Tunable narrow-linewidth fiber laser based on light-controlled graphene. IEEE J. Lightw. Technol. 37(4), 1338–1344 (2019a)ADSCrossRef Li, Y., Huang, L., Huang, S., Gao, L., Yin, G., Lan, T., Cao, Y., Ikechukwu, I., Zhu, T.: Tunable narrow-linewidth fiber laser based on light-controlled graphene. IEEE J. Lightw. Technol. 37(4), 1338–1344 (2019a)ADSCrossRef
go back to reference Li, Z., Shen, Y., Yu, Z., Ruan, X., Zhang, Y., Dai, Y.: Polarization-dependent tuning property of graphene integrated tilted fiber bragg grating for sensitivity optimization: a numerical study. IEEE J. Lightw. Technol. 37(9), 2023–2035 (2019b)ADSCrossRef Li, Z., Shen, Y., Yu, Z., Ruan, X., Zhang, Y., Dai, Y.: Polarization-dependent tuning property of graphene integrated tilted fiber bragg grating for sensitivity optimization: a numerical study. IEEE J. Lightw. Technol. 37(9), 2023–2035 (2019b)ADSCrossRef
go back to reference Liao, Y., Feng, G., Zhou, H., Mo, J., Sun, H., Zhou, S.: Ultra-broadband all-optical graphene modulator. IEEE Photon. Technol. Lett. 30(8), 661–664 (2018)ADSCrossRef Liao, Y., Feng, G., Zhou, H., Mo, J., Sun, H., Zhou, S.: Ultra-broadband all-optical graphene modulator. IEEE Photon. Technol. Lett. 30(8), 661–664 (2018)ADSCrossRef
go back to reference Luo, X., Zhai, X., Li, H., Liu, J., Wang, L.: Tunable nonreciprocal graphene waveguide with Kerr nonlinear material. IEEE Photon. Technol. Lett. 29(21), 1903–1906 (2017)ADSCrossRef Luo, X., Zhai, X., Li, H., Liu, J., Wang, L.: Tunable nonreciprocal graphene waveguide with Kerr nonlinear material. IEEE Photon. Technol. Lett. 29(21), 1903–1906 (2017)ADSCrossRef
go back to reference Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M., Yokoyama, N., Ishikawa, H.: 1.3-μm CW lasing characteristics of self-assembled InGaAs–GaAs quantum dots. IEEE J. Quantum Electron. 36(4), 472–478 (2000)ADSCrossRef Mukai, K., Nakata, Y., Otsubo, K., Sugawara, M., Yokoyama, N., Ishikawa, H.: 1.3-μm CW lasing characteristics of self-assembled InGaAs–GaAs quantum dots. IEEE J. Quantum Electron. 36(4), 472–478 (2000)ADSCrossRef
go back to reference Qasaimeh, O.: Linewidth enhancement factor of quantum dot lasers. Opt. Quantum Electron. 37(5), 495–507 (2005)CrossRef Qasaimeh, O.: Linewidth enhancement factor of quantum dot lasers. Opt. Quantum Electron. 37(5), 495–507 (2005)CrossRef
go back to reference Qasaimeh, O.: Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 28(14), 1553–1556 (2016)ADSCrossRef Qasaimeh, O.: Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 28(14), 1553–1556 (2016)ADSCrossRef
go back to reference Qiao, P., Cook, K., Li, K., Chang-Hasnain, C.: Wavelength-swept VCSELs. IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516(1)–1700516(16) (2017)CrossRef Qiao, P., Cook, K., Li, K., Chang-Hasnain, C.: Wavelength-swept VCSELs. IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516(1)–1700516(16) (2017)CrossRef
go back to reference Sahraee, E., Zarifkar, A.: MEMS-based tuning of InGaAs/GaAs quantum Dot-VCSOA. IEEE J. Quantum Electron. 51(5), 5100110(1)–5100110(10) (2015)CrossRef Sahraee, E., Zarifkar, A.: MEMS-based tuning of InGaAs/GaAs quantum Dot-VCSOA. IEEE J. Quantum Electron. 51(5), 5100110(1)–5100110(10) (2015)CrossRef
go back to reference Shah, M., Lu, R., Peng, D., Ma, Y., Ye, S., Zhang, Y., Zhang, Z., Liu, Y.: Graphene-assisted polarization-insensitive electro-absorption optical modulator. IEEE Trans. Nanotechnol. 16(6), 1004–1010 (2017a)ADSCrossRef Shah, M., Lu, R., Peng, D., Ma, Y., Ye, S., Zhang, Y., Zhang, Z., Liu, Y.: Graphene-assisted polarization-insensitive electro-absorption optical modulator. IEEE Trans. Nanotechnol. 16(6), 1004–1010 (2017a)ADSCrossRef
go back to reference Shah, M., Ye, S.-W., Zou, X.-H., Yuan, F., Jha, A., Zhang, Y., Lu, R.-G., Liu, Y.: Graphene-assisted electroabsorption optical modulator using D-microfiber. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305(1)–3400305(5) (2017b)CrossRef Shah, M., Ye, S.-W., Zou, X.-H., Yuan, F., Jha, A., Zhang, Y., Lu, R.-G., Liu, Y.: Graphene-assisted electroabsorption optical modulator using D-microfiber. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305(1)–3400305(5) (2017b)CrossRef
go back to reference Sharif, M., Ghafary, B., Ara, M.: A novel graphene-based electro-optical modulator using modulation instability. IEEE Photon. Technol. Lett. 24(15), 2897–2900 (2016)ADSCrossRef Sharif, M., Ghafary, B., Ara, M.: A novel graphene-based electro-optical modulator using modulation instability. IEEE Photon. Technol. Lett. 24(15), 2897–2900 (2016)ADSCrossRef
go back to reference Suzuki, T., Arakawa, T., Tada, K., Imazato, Y., Noh, J.-H., Haneji, N.: Observation of giant electrorefractive effect in five-layer asymmetric coupled quantum wells (FACQWs). Jpn. J. Appl. Phys. 43(12A), L1540–L1542 (2004)ADSCrossRef Suzuki, T., Arakawa, T., Tada, K., Imazato, Y., Noh, J.-H., Haneji, N.: Observation of giant electrorefractive effect in five-layer asymmetric coupled quantum wells (FACQWs). Jpn. J. Appl. Phys. 43(12A), L1540–L1542 (2004)ADSCrossRef
go back to reference Tong, C., Xu, D., Yoon, S., Ding, Y., Fan, W.: Temperature characteristics of 1.3-μm p-Doped InAs–GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15(3), 743–748 (2009)ADSCrossRef Tong, C., Xu, D., Yoon, S., Ding, Y., Fan, W.: Temperature characteristics of 1.3-μm p-Doped InAs–GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 15(3), 743–748 (2009)ADSCrossRef
go back to reference Wang, B., Blaize, S., Seok, J., Kim, S., Yang, H., Salas-Montiel, R.: Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J. Sel. Top. Quantum Electron. 25(3), 4600706(1)–4600706(6) (2019a)CrossRef Wang, B., Blaize, S., Seok, J., Kim, S., Yang, H., Salas-Montiel, R.: Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J. Sel. Top. Quantum Electron. 25(3), 4600706(1)–4600706(6) (2019a)CrossRef
go back to reference Wang, J., Yang, L., Hu, Z.-D., He, W., Zheng, G.: Analysis of graphene-based multilayer comb-like absorption system based on multiple waveguide theory. IEEE Photon. Technol. Lett. 31(7), 561–564 (2019b)ADSCrossRef Wang, J., Yang, L., Hu, Z.-D., He, W., Zheng, G.: Analysis of graphene-based multilayer comb-like absorption system based on multiple waveguide theory. IEEE Photon. Technol. Lett. 31(7), 561–564 (2019b)ADSCrossRef
go back to reference Wang, Y., Zhang, B., Yang, H., Hou, J., Su, X., Sun, Z., He, J.: Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. IEEE J. Lightw. Technol. 37(13), 2927–2931 (2019c)ADSCrossRef Wang, Y., Zhang, B., Yang, H., Hou, J., Su, X., Sun, Z., He, J.: Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. IEEE J. Lightw. Technol. 37(13), 2927–2931 (2019c)ADSCrossRef
go back to reference Yao, R., Zheng, B., Kum, H., Kim, Y., Bae, S., Kim, J., Zhang, H., Guo, W.: Graphene/III–V hybrid diode optical modulator. In: 2018 Conference on Lasers and Electro-Optics (CLEO) (2018) Yao, R., Zheng, B., Kum, H., Kim, Y., Bae, S., Kim, J., Zhang, H., Guo, W.: Graphene/III–V hybrid diode optical modulator. In: 2018 Conference on Lasers and Electro-Optics (CLEO) (2018)
go back to reference Ye, S.-W., Liang, D., Lu, R.-G., Shah, M.K., Zou, X.-H., Yang, F., Yuan, F., Liu, Y.: Polarization-independent modulator by partly tilted graphene-induced electro-absorption effect. IEEE Photon. Technol. Lett. 29(1), 23–26 (2017a)ADSCrossRef Ye, S.-W., Liang, D., Lu, R.-G., Shah, M.K., Zou, X.-H., Yang, F., Yuan, F., Liu, Y.: Polarization-independent modulator by partly tilted graphene-induced electro-absorption effect. IEEE Photon. Technol. Lett. 29(1), 23–26 (2017a)ADSCrossRef
go back to reference Ye, S.-W., Yuan, F., Zou, X.-H., Shah, M., Lu, R.-G., Liu, Y.: High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400105(1)–3400105(5) (2017b)CrossRef Ye, S.-W., Yuan, F., Zou, X.-H., Shah, M., Lu, R.-G., Liu, Y.: High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400105(1)–3400105(5) (2017b)CrossRef
go back to reference Zhang, R., Wang, J., Liao, M., Li, X., Kuan, P.-W., Liu, Y., Zhou, Y., Gao, W.: Tunable Q-switched fiber laser based on a graphene saturable absorber without additional tuning element. IEEE Photon. J. 11(1), 1500310(1)–1500310(11) (2019) Zhang, R., Wang, J., Liao, M., Li, X., Kuan, P.-W., Liu, Y., Zhou, Y., Gao, W.: Tunable Q-switched fiber laser based on a graphene saturable absorber without additional tuning element. IEEE Photon. J. 11(1), 1500310(1)–1500310(11) (2019)
go back to reference Zhou, Y., Huang, M., Chang-Hasnain, C.: Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. Opt. Express 16(18), 14221–14226 (2008)ADSCrossRef Zhou, Y., Huang, M., Chang-Hasnain, C.: Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. Opt. Express 16(18), 14221–14226 (2008)ADSCrossRef
Metadata
Title
Using graphene to tune vertical-cavity surface-emitting lasers
Author
Omar Qasaimeh
Publication date
01-02-2020
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 2/2020
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-2252-7

Other articles of this Issue 2/2020

Optical and Quantum Electronics 2/2020 Go to the issue