Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Utilization of Aqueous Weeds for Biofuel Production: Current Status and Future Prospects

Authors : Rafiq A. Rather, Madhulika Bhagat

Published in: Bioremediation using weeds

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The energy crisis is one of the biggest issues encountered by today’s world. Rapid economic growth and population explosion have resulted in a substantial increase in energy (fuel) consumption, especially in the transportation sector. The currently available sources of energy (such as fossil fuels) are limited and are consumed at an alarming rate throughout the world. Such limited sources of energy are likely to get exhausted over time

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbasi S, Nipaney P, Schaumberg G (1990) Bioenergy potential of eight common aquatic weeds. Biol Wastes 34:359–366CrossRef Abbasi S, Nipaney P, Schaumberg G (1990) Bioenergy potential of eight common aquatic weeds. Biol Wastes 34:359–366CrossRef
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef
go back to reference Anker Y, Nakonechny F, Niazov B, Lugovskoy S, Nisnevitch M (2016) In: MATEC web of conferences 2016, vol 70. EDP Sciences, p 12005 Anker Y, Nakonechny F, Niazov B, Lugovskoy S, Nisnevitch M (2016) In: MATEC web of conferences 2016, vol 70. EDP Sciences, p 12005
go back to reference Armah-Agyeman G, Gyamerah M, Biney PO, Woldesenbet S (2016) Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production. J Sci Food Agric 96:4390–4397CrossRef Armah-Agyeman G, Gyamerah M, Biney PO, Woldesenbet S (2016) Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production. J Sci Food Agric 96:4390–4397CrossRef
go back to reference Arsène M-A, Bilba K, Onésippe C (2017) Treatments for viable utilization of vegetable fibres in inorganic-based composites. In: Sustainable and nonconventional construction materials using inorganic bonded fibre composites. Elsevier, pp 69–123 Arsène M-A, Bilba K, Onésippe C (2017) Treatments for viable utilization of vegetable fibres in inorganic-based composites. In: Sustainable and nonconventional construction materials using inorganic bonded fibre composites. Elsevier, pp 69–123
go back to reference Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6 Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6
go back to reference Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng
go back to reference Borah AJ, Agarwal M, Goyal A, Moholkar VS (2019) Physical insights of ultrasound-assisted ethanol production from composite feedstock of invasive weeds. Ultrason Sonochem 51:378–385CrossRef Borah AJ, Agarwal M, Goyal A, Moholkar VS (2019) Physical insights of ultrasound-assisted ethanol production from composite feedstock of invasive weeds. Ultrason Sonochem 51:378–385CrossRef
go back to reference Busic A, Kundas S, Morzak G, Belskaya H, Mardetko N et al (2018) Recent trends in biodiesel and biogas production. Food Technol Biotechnol 56:152–173CrossRef Busic A, Kundas S, Morzak G, Belskaya H, Mardetko N et al (2018) Recent trends in biodiesel and biogas production. Food Technol Biotechnol 56:152–173CrossRef
go back to reference Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microb Biotechnol 100:9451–9467CrossRef Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microb Biotechnol 100:9451–9467CrossRef
go back to reference Cheng NG, Hasan M, Kumoro AC, Ling CF, Tham M (2009) Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol 17:399–408 Cheng NG, Hasan M, Kumoro AC, Ling CF, Tham M (2009) Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol 17:399–408
go back to reference Conde-Mejia C, Jimenez-Gutierrez A, El-Halwagi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 90:189–202CrossRef Conde-Mejia C, Jimenez-Gutierrez A, El-Halwagi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 90:189–202CrossRef
go back to reference Coyle WT (2007) The future of biofuels: a global perspective Coyle WT (2007) The future of biofuels: a global perspective
go back to reference da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3CrossRef da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3CrossRef
go back to reference Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp (United States), 12. Colorado State University, Fort Collins Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp (United States), 12. Colorado State University, Fort Collins
go back to reference Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381CrossRef Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381CrossRef
go back to reference DeCicco J (2018) Methodological issues regarding biofuels and carbon uptake. Sustainability 10:1581CrossRef DeCicco J (2018) Methodological issues regarding biofuels and carbon uptake. Sustainability 10:1581CrossRef
go back to reference Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manage 51:2738–2749CrossRef Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manage 51:2738–2749CrossRef
go back to reference Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170MATHCrossRef Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170MATHCrossRef
go back to reference Dombek K, Ingram L (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microb 53:1286–1291CrossRef Dombek K, Ingram L (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microb 53:1286–1291CrossRef
go back to reference Dunn JB (2019) Biofuel and bioproduct environmental sustainability analysis. Curr Opin Biotechnol 57:88–93CrossRef Dunn JB (2019) Biofuel and bioproduct environmental sustainability analysis. Curr Opin Biotechnol 57:88–93CrossRef
go back to reference El Falaky AA, Aboulroos S, Saoud A, Ali M (2004) In: 8th international water technology conference IWTC8, Alexandria, Egypt. Citeseer, pp 361–376 El Falaky AA, Aboulroos S, Saoud A, Ali M (2004) In: 8th international water technology conference IWTC8, Alexandria, Egypt. Citeseer, pp 361–376
go back to reference Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111CrossRef Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111CrossRef
go back to reference Ganguly A, Chatterjee P, Dey A (2012) Studies on ethanol production from water hyacinth—a review. Renew Sustain Energy Rev 16:966–972CrossRef Ganguly A, Chatterjee P, Dey A (2012) Studies on ethanol production from water hyacinth—a review. Renew Sustain Energy Rev 16:966–972CrossRef
go back to reference Ganguly A, Das S, Bhattacharya A, Dey A, Chatterjee PK (2013) Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters Ganguly A, Das S, Bhattacharya A, Dey A, Chatterjee PK (2013) Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters
go back to reference Gao D, Uppugundla N, Chundawat SP, Yu X, Hermanson S et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5CrossRef Gao D, Uppugundla N, Chundawat SP, Yu X, Hermanson S et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5CrossRef
go back to reference Gaurav N, Sivasankari S, Kiran G, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214CrossRef Gaurav N, Sivasankari S, Kiran G, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214CrossRef
go back to reference Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329CrossRef Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329CrossRef
go back to reference Giampietro M, Ulgiati S, Pimentel D (1997) Feasibility of large-scale biofuel production. Bioscience 47:587–600CrossRef Giampietro M, Ulgiati S, Pimentel D (1997) Feasibility of large-scale biofuel production. Bioscience 47:587–600CrossRef
go back to reference Gupta G, Gour VS, Sharma P, Kothari SL (2017) Acid and enzymatic hydrolysis mediated bioethanol production from biomass of a noxious weed-Parthenium hysterophorus L. Environ Prog Sustain Energy 36:294–296CrossRef Gupta G, Gour VS, Sharma P, Kothari SL (2017) Acid and enzymatic hydrolysis mediated bioethanol production from biomass of a noxious weed-Parthenium hysterophorus L. Environ Prog Sustain Energy 36:294–296CrossRef
go back to reference Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241CrossRef Gusain R, Suthar S (2017) Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot 109:233–241CrossRef
go back to reference Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582CrossRef
go back to reference Harper HJ, Daniel HA (1934) Chemical composition of certain aquatic plants. Bot Gaz 96:186–189CrossRef Harper HJ, Daniel HA (1934) Chemical composition of certain aquatic plants. Bot Gaz 96:186–189CrossRef
go back to reference Harun M, Radiah AD, Abidin ZZ, Yunus R (2011) Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol 102:5193–5199CrossRef Harun M, Radiah AD, Abidin ZZ, Yunus R (2011) Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol 102:5193–5199CrossRef
go back to reference Haynes RR (1988) Reproductive biology of selected aquatic plants. Ann MO. Bot Gard 805–810 Haynes RR (1988) Reproductive biology of selected aquatic plants. Ann MO. Bot Gard 805–810
go back to reference Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
go back to reference Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
go back to reference Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) In: The world’s worst weeds. Distribution and biology. University press of Hawaii Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) In: The world’s worst weeds. Distribution and biology. University press of Hawaii
go back to reference Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R et al (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:185CrossRef Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R et al (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:185CrossRef
go back to reference Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microb Rev 41:941–962CrossRef Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microb Rev 41:941–962CrossRef
go back to reference Jayan P, Sathyanathan N (2012) Aquatic weed classification, environmental effects and the management technologies for its effective control in Kerala, India. Int J Agric Biol Eng 5:76–91 Jayan P, Sathyanathan N (2012) Aquatic weed classification, environmental effects and the management technologies for its effective control in Kerala, India. Int J Agric Biol Eng 5:76–91
go back to reference Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582CrossRef Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582CrossRef
go back to reference Kaur J, Yogalakshmi K (2019) Exploring the potential of carbohydrate rich algal biomass as feedstock for bioethanol production. Liq Biofuel Prod 167–195 Kaur J, Yogalakshmi K (2019) Exploring the potential of carbohydrate rich algal biomass as feedstock for bioethanol production. Liq Biofuel Prod 167–195
go back to reference Kaur M, Kumar M, Sachdeva S, Puri S (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402CrossRef Kaur M, Kumar M, Sachdeva S, Puri S (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402CrossRef
go back to reference Khan S, Siddique R, Sajjad W, Nabi G, Hayat KM et al (2017) Biodiesel production from algae to overcome the energy crisis. HAYATI J Biosci 24:163–167CrossRef Khan S, Siddique R, Sajjad W, Nabi G, Hayat KM et al (2017) Biodiesel production from algae to overcome the energy crisis. HAYATI J Biosci 24:163–167CrossRef
go back to reference Kim Y, Hendrickson R, Mosier NS, Ladisch MR (2009) Liquid hot water pretreatment of cellulosic biomass In Biofuels. Springer, pp 93–102 Kim Y, Hendrickson R, Mosier NS, Ladisch MR (2009) Liquid hot water pretreatment of cellulosic biomass In Biofuels. Springer, pp 93–102
go back to reference Koussa J, Chaiboonchoe A, Salehi-Ashtiani K (2014) Computational approaches for microalgal biofuel optimization: a review. BioMed Res Int Koussa J, Chaiboonchoe A, Salehi-Ashtiani K (2014) Computational approaches for microalgal biofuel optimization: a review. BioMed Res Int
go back to reference Kumar A (2013) Pretreatment methods of lignocellulosic materials for biofuel production: a review. J Emerg Trends Eng Appl Sci 4:181–193 Kumar A (2013) Pretreatment methods of lignocellulosic materials for biofuel production: a review. J Emerg Trends Eng Appl Sci 4:181–193
go back to reference Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7CrossRef Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7CrossRef
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
go back to reference Kumari N, Bhattacharya A, Dey A, Ganguly A, Chatterjee P (2014) Bioethanol production from water hyacinth biomass using isolated fungal strain from local environment. Biolife 2:516–522 Kumari N, Bhattacharya A, Dey A, Ganguly A, Chatterjee P (2014) Bioethanol production from water hyacinth biomass using isolated fungal strain from local environment. Biolife 2:516–522
go back to reference Kuzmina ML, Braukmann TWA, Zakharov EV (2018) Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Appl Plant Sci 6:e01155CrossRef Kuzmina ML, Braukmann TWA, Zakharov EV (2018) Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Appl Plant Sci 6:e01155CrossRef
go back to reference Ladisch M, Lin K, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzym Microb Technol 5:82–102CrossRef Ladisch M, Lin K, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzym Microb Technol 5:82–102CrossRef
go back to reference Lee G, Fagan JM (2015) Converting problematic aquatic plants to biofuel Lee G, Fagan JM (2015) Converting problematic aquatic plants to biofuel
go back to reference Lindskog EK (2018) The upstream process: principal modes of operation. In: Biopharm Process. Elsevier, pp 625–635 Lindskog EK (2018) The upstream process: principal modes of operation. In: Biopharm Process. Elsevier, pp 625–635
go back to reference Liu Y, Nie Y, Lu X, He H, Pan F, et al (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem Liu Y, Nie Y, Lu X, He H, Pan F, et al (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem
go back to reference Low T, Booth C, Council I (2007) The weedy truth about biofuels. Invasive Species Council, Melbourne Low T, Booth C, Council I (2007) The weedy truth about biofuels. Invasive Species Council, Melbourne
go back to reference Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564CrossRef Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564CrossRef
go back to reference Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609 Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609
go back to reference Mbaneme-Smith V, Chinn MS (2015) Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss Control Technol 3:23 Mbaneme-Smith V, Chinn MS (2015) Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss Control Technol 3:23
go back to reference Mielenz JR (2015) In: Bioenergy. Elsevier, pp 385–406 Mielenz JR (2015) In: Bioenergy. Elsevier, pp 385–406
go back to reference Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. Omics J integr Biol 17:537–549 Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. Omics J integr Biol 17:537–549
go back to reference Mukhopadhyay S, Mukherjee P, Chatterjee N (2008) Optimization of enzymatic hydrolysis of water hyacinth by Trichoderma reesei vis-a-vis production of fermentable sugars. Acta Aliment 37:367–377CrossRef Mukhopadhyay S, Mukherjee P, Chatterjee N (2008) Optimization of enzymatic hydrolysis of water hyacinth by Trichoderma reesei vis-a-vis production of fermentable sugars. Acta Aliment 37:367–377CrossRef
go back to reference Müller H, Trösch W (1986) Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl Microbiol Biotechnol 24:180–185CrossRef Müller H, Trösch W (1986) Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl Microbiol Biotechnol 24:180–185CrossRef
go back to reference Murphy K (1988) Aquatic weed problems and their management: a review I. the worldwide scale of the aquatic weed problem. Crop Prot 7:232–248CrossRef Murphy K (1988) Aquatic weed problems and their management: a review I. the worldwide scale of the aquatic weed problem. Crop Prot 7:232–248CrossRef
go back to reference Ninomiya K, Yamauchi T, Kobayashi M, Ogino C, Shimizu N, Takahashi K (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29CrossRef Ninomiya K, Yamauchi T, Kobayashi M, Ogino C, Shimizu N, Takahashi K (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29CrossRef
go back to reference Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7CrossRef Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7CrossRef
go back to reference Oyedeji A, Abowei J (2012) The classification, distribution, control and economic importance of aquatic plants. Int J Fish Aquat Sci 1:118–128 Oyedeji A, Abowei J (2012) The classification, distribution, control and economic importance of aquatic plants. Int J Fish Aquat Sci 1:118–128
go back to reference Pandey MK, Dasgupta CN, Mishra S, Srivastava M, Gupta VK, et al (2019) Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production. Appl Microbiol Biotechnol Pandey MK, Dasgupta CN, Mishra S, Srivastava M, Gupta VK, et al (2019) Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production. Appl Microbiol Biotechnol
go back to reference Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672CrossRef Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672CrossRef
go back to reference Patinvoh RJ, Taherzadeh MJ (2019) Fermentation processes for second-generation biofuels. In: Second and third generation of feedstocks. Elsevier, pp. 241–272 Patinvoh RJ, Taherzadeh MJ (2019) Fermentation processes for second-generation biofuels. In: Second and third generation of feedstocks. Elsevier, pp. 241–272
go back to reference Pinto AC, Guarieiro LL, Rezende MJ, Ribeiro NM, Torres EA et al (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330CrossRef Pinto AC, Guarieiro LL, Rezende MJ, Ribeiro NM, Torres EA et al (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330CrossRef
go back to reference Premjet S (2018) Potential of weed biomass for bioethanol production. In: Fuel ethanol production from sugarcane. IntechOpen Premjet S (2018) Potential of weed biomass for bioethanol production. In: Fuel ethanol production from sugarcane. IntechOpen
go back to reference Priya H, Pavithra A, Divya J (2014) Prospects and problems of utilization of weed biomass: a review. Res Rev J Agri Allied Sci 3:2 Priya H, Pavithra A, Divya J (2014) Prospects and problems of utilization of weed biomass: a review. Res Rev J Agri Allied Sci 3:2
go back to reference Reales-Alfaro J-G, Trujillo-Daza L-T, Arzuaga-Lindado G, Castaño-Peláez H-I, Polo-Córdoba Á-D (2013) Acid hydrolysis of water hyacinth to obtain fermentable sugars. CT&F-Cienc Tecnol Futuro 5:101–111CrossRef Reales-Alfaro J-G, Trujillo-Daza L-T, Arzuaga-Lindado G, Castaño-Peláez H-I, Polo-Córdoba Á-D (2013) Acid hydrolysis of water hyacinth to obtain fermentable sugars. CT&F-Cienc Tecnol Futuro 5:101–111CrossRef
go back to reference Rouches E, Zhou S, Steyer J-P, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51:1784–1792CrossRef Rouches E, Zhou S, Steyer J-P, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51:1784–1792CrossRef
go back to reference Sagar CV, Kumari NA (2013) Sustainable biofuel production from water Hyacinth (Eicchornia crassipes). Int J Eng Trends Technol 4:4454–4458 Sagar CV, Kumari NA (2013) Sustainable biofuel production from water Hyacinth (Eicchornia crassipes). Int J Eng Trends Technol 4:4454–4458
go back to reference Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195CrossRef Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195CrossRef
go back to reference Shalaby EA (2013) Biofuel: sources, extraction and determination. In: Liquid, gaseous and solid biofuels-conversion techniques. IntechOpen Shalaby EA (2013) Biofuel: sources, extraction and determination. In: Liquid, gaseous and solid biofuels-conversion techniques. IntechOpen
go back to reference Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82CrossRef Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82CrossRef
go back to reference Soda S, Mishima D, Inoue D, Ike M (2013) A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification. Water Sci Technol 67:2637–2644CrossRef Soda S, Mishima D, Inoue D, Ike M (2013) A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification. Water Sci Technol 67:2637–2644CrossRef
go back to reference Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38:6977–6988CrossRef Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38:6977–6988CrossRef
go back to reference Su Y, Zhang P, Su Y (2015) An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew Sustain Energy Rev 50:991–1003CrossRef Su Y, Zhang P, Su Y (2015) An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew Sustain Energy Rev 50:991–1003CrossRef
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
go back to reference Swain K (2014) Biofuel production in India: potential, prospectus and technology. J Fundam Renew Energy Appl 4:1–4CrossRef Swain K (2014) Biofuel production in India: potential, prospectus and technology. J Fundam Renew Energy Appl 4:1–4CrossRef
go back to reference Thi BTN, Thanh LH, Lan TP, Thuy ND, Ju Y-H (2017) Comparison of some pretreatment methods on cellulose recovery from water hyacinth (Eichhornia crassipe). J Clean Energy Technol 5:274–279CrossRef Thi BTN, Thanh LH, Lan TP, Thuy ND, Ju Y-H (2017) Comparison of some pretreatment methods on cellulose recovery from water hyacinth (Eichhornia crassipe). J Clean Energy Technol 5:274–279CrossRef
go back to reference Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Water Sci Technol J Int Assoc Water Pollut Res 57:1683–1692CrossRef Tilche A, Galatola M (2008) The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Water Sci Technol J Int Assoc Water Pollut Res 57:1683–1692CrossRef
go back to reference Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12CrossRef Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12CrossRef
go back to reference Ummalyma SB, Supriya RD, Sindhu R, Binod P, Nair RB, et al (2019) Biological pretreatment of lignocellulosic biomass—current trends and future perspectives. In: Second and third generation of feedstocks. Elsevier, pp 197–212 Ummalyma SB, Supriya RD, Sindhu R, Binod P, Nair RB, et al (2019) Biological pretreatment of lignocellulosic biomass—current trends and future perspectives. In: Second and third generation of feedstocks. Elsevier, pp 197–212
go back to reference Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer Science & Business Media Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer Science & Business Media
go back to reference Wang W, Yuan T, Cui B (2014) Biological pretreatment with white rot fungi and their co-culture to overcome lignocellulosic recalcitrance for improved enzymatic digestion. BioResources 9:3968–3976 Wang W, Yuan T, Cui B (2014) Biological pretreatment with white rot fungi and their co-culture to overcome lignocellulosic recalcitrance for improved enzymatic digestion. BioResources 9:3968–3976
go back to reference Webb A, Coates D (2012) Biofuels and biodiversity. CBD technical series, vol 69 Webb A, Coates D (2012) Biofuels and biodiversity. CBD technical series, vol 69
go back to reference Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299CrossRef Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299CrossRef
go back to reference Yang TC, Kumaran J, Amartey S, Maki M, Li X, et al (2014) Biofuels and bioproducts produced through microbial conversion of biomass. In: Bioenergy research: advances and applications. Elsevier, pp 71–93 Yang TC, Kumaran J, Amartey S, Maki M, Li X, et al (2014) Biofuels and bioproducts produced through microbial conversion of biomass. In: Bioenergy research: advances and applications. Elsevier, pp 71–93
go back to reference Zabed H, Sahu J, Boyce A, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774CrossRef Zabed H, Sahu J, Boyce A, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774CrossRef
go back to reference Zgórska K (2016) Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass. International Agrophys Zgórska K (2016) Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass. International Agrophys
go back to reference Zhang K, Pei Z, Wang D (2016a) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–23 Zhang K, Pei Z, Wang D (2016a) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–23
go back to reference Zhang Q, Weng C, Huang H, Achal V, Wang D (2016b). Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Front Microbiol 6 Zhang Q, Weng C, Huang H, Achal V, Wang D (2016b). Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Front Microbiol 6
go back to reference Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefin 6:465–482CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefin 6:465–482CrossRef
go back to reference Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50CrossRef Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50CrossRef
Metadata
Title
Utilization of Aqueous Weeds for Biofuel Production: Current Status and Future Prospects
Authors
Rafiq A. Rather
Madhulika Bhagat
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6552-0_2