Skip to main content
Top

2025 | OriginalPaper | Chapter

Utilizing the Power of Residual and Attention Properties with Binary Focal Loss Optimization for Underwater Image Segmentation Using UNet Architecture

Authors : Geomol George, S. Anusuya

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent developments in deep-sea exploration, environmental surveillance, and ocean research, accurate segmentation of underwater images is essential. This study pursues this goal by exploring underwater image segmentation from a deep learning perspective. It specifically looks at how well the Attention Residual UNet architecture, a more sophisticated version of the U-Net, works with the focal loss technique to achieve accuracy in this crucial task. Using attention mechanisms and residual connections, the Attention Residual UNet architecture, based on the U-Net framework, can capture fine details while maintaining contextual coherence. Model loss and accuracy measures are considered as this study carefully assesses the architecture’s performance. Notably, the model exhibits outstanding accuracy, obtaining 97.23% and 92.76% accuracy on the training and validation sets, respectively. The Jaccard coefficient further demonstrates the model’s efficiency, which measures the intersection between predicted and actual segments and has coefficients for the model and validation sets of 74.31% and 66.51% , respectively. The Mean Intersection over Union (MIoU) statistic, which boasts a value 91.24%, validates the model’s superiority.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Worm B (2020) Rebuilding marine life. Nature 580(7801):39–51CrossRef Duarte CM, Agusti S, Barbier E, Britten GL, Castilla JC, Gattuso JP, Worm B (2020) Rebuilding marine life. Nature 580(7801):39–51CrossRef
2.
go back to reference Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference proceedings (IEEE Cat. No. 01CH37295), vol 1. IEEE, pp 409–416 Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference proceedings (IEEE Cat. No. 01CH37295), vol 1. IEEE, pp 409–416
3.
go back to reference Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRef Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRef
4.
go back to reference Schettini R, Corchs S (2010) Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J Adv Signal Processing 2010:1–14CrossRef Schettini R, Corchs S (2010) Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J Adv Signal Processing 2010:1–14CrossRef
5.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
6.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention? MICCAI 2015: 18th international conference, Munich, Germany, 5–9 Oct 2015, Proceedings, Part III 18. Springer International Publishing, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention? MICCAI 2015: 18th international conference, Munich, Germany, 5–9 Oct 2015, Proceedings, Part III 18. Springer International Publishing, pp 234–241
7.
go back to reference Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:​1804.​03999
8.
go back to reference Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:​1802.​06955
9.
go back to reference Li Z, Kamnitsas K, Glocker B (2019) Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Medical image computing and computer assisted intervention? MICCAI 2019: 22nd international conference, Shenzhen, China, 13–17 Oct 2019, Proceedings, Part III 22. Springer International Publishing, pp 402–410 Li Z, Kamnitsas K, Glocker B (2019) Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Medical image computing and computer assisted intervention? MICCAI 2019: 22nd international conference, Shenzhen, China, 13–17 Oct 2019, Proceedings, Part III 22. Springer International Publishing, pp 402–410
10.
go back to reference Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988 Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
14.
go back to reference Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988 Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
15.
go back to reference Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big data 6(1):1–48CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big data 6(1):1–48CrossRef
16.
go back to reference Deng J et al (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE Deng J et al (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE
17.
go back to reference Zitzler E et al (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132 Zitzler E et al (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132
18.
go back to reference Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753CrossRef Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753CrossRef
19.
go back to reference Ni Z-L et al (2019) Raunet: residual attention u-net for semantic segmentation of cataract surgical instruments. In: International conference on neural information processing. Springer International Publishing, Cham Ni Z-L et al (2019) Raunet: residual attention u-net for semantic segmentation of cataract surgical instruments. In: International conference on neural information processing. Springer International Publishing, Cham
Metadata
Title
Utilizing the Power of Residual and Attention Properties with Binary Focal Loss Optimization for Underwater Image Segmentation Using UNet Architecture
Authors
Geomol George
S. Anusuya
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_9