Skip to main content
Top
Published in: Journal of Materials Science 21/2020

20-04-2020 | Chemical routes to materials

UV-light-assisted preparation of MoO3−x/Ag NPs film and investigation on the SERS performance

Authors: Zhiqiang Niu, Canliang Zhou, Jiawei Wang, Yinghao Xu, Chenjie Gu, Tao Jiang, Shuwen Zeng, Yonghui Zhang, Diing Shenp Ang, Jun Zhou

Published in: Journal of Materials Science | Issue 21/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface-enhanced Raman scattering (SERS) technique is a powerful spectrum analysis technique for the ultra-low molecular trace detection. Conventionally, noble metals like silver (Ag) and gold (Au) are used to prepare the SERS substrates; however, limitations of complicated experimental designs and sophisticated process steps impede their wide applications in practice. Recently, metal oxides arise as a promising material for SERS application, but relatively weak Raman signal enhancement and poor material stability still pose as a challenge. Here, a UV-light-assisted fabrication of MoO3−x/silver nanoparticles (MoO3−x/Ag NPs) film is proposed. In the experiment, the sub-transition-metal-oxide of MoO3−x was used as the Raman chemical enhancement substrate as well as the reducing agent. Through the spin-coating of MoO3−x layer on the silicon substrate and UV-light-assisted reduction of silver nitride (AgNO3) on the MoO3−x layer, a novel MoO3−x/Ag NPs one-layer film was fabricated. Using the Rhodamine B (RhB) as the Raman reporter, SERS measurement shows that enhancement factor (EF) of 1.195 × 106 could be achieved. Moreover, a Raman signal amplifying strategy is further demonstrated by constructing MoO3−x/Ag NPs multi-layer films. And result evidences that maximum gain of 2.07 for the RhB Raman peak at 1280 cm−1 can be obtained on the MoO3−x/Ag NPs three-layer film when referred to that on the MoO3−x/Ag NPs one-layer film. Meanwhile, the EF of the MoO3−x/Ag NPs three-layer film is also improved to 2.985 × 106, giving the minimum detectable concentration of 10−9 M.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials. Nat Rev Mate 1:16021-1–16021-16 Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials. Nat Rev Mate 1:16021-1–16021-16
2.
go back to reference Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in-vivo biosensing. Nat. Rev. Chem. 1:0060-1–0060-19CrossRef Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in-vivo biosensing. Nat. Rev. Chem. 1:0060-1–0060-19CrossRef
3.
go back to reference Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069CrossRef Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069CrossRef
4.
go back to reference Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46:3866–3885CrossRef Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46:3866–3885CrossRef
5.
go back to reference Niu W, Chua YAA, Zhang W, Huang H, Lu X (2015) Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc 137:10460–10463CrossRef Niu W, Chua YAA, Zhang W, Huang H, Lu X (2015) Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc 137:10460–10463CrossRef
6.
go back to reference Liu K, Bai Y, Zhang L et al (2016) Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16:3675–3681CrossRef Liu K, Bai Y, Zhang L et al (2016) Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16:3675–3681CrossRef
7.
go back to reference Ye S, Benz F, Wheeler MC et al (2016) One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale 8:14932–14942CrossRef Ye S, Benz F, Wheeler MC et al (2016) One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale 8:14932–14942CrossRef
8.
go back to reference Zhu C, Meng G, Zheng P et al (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater 28:4871–4876CrossRef Zhu C, Meng G, Zheng P et al (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater 28:4871–4876CrossRef
9.
go back to reference Tian Y, Liu H, Chen Y et al (2019) Seedless one-spot synthesis of 3D and 2D Ag Nanoflowers for multiple phase SERS-based molecule detection. Sens Actuators B: Chem 301:127142(1–13)CrossRef Tian Y, Liu H, Chen Y et al (2019) Seedless one-spot synthesis of 3D and 2D Ag Nanoflowers for multiple phase SERS-based molecule detection. Sens Actuators B: Chem 301:127142(1–13)CrossRef
10.
go back to reference Ashley MJ, Bourgeois MR, Murthy RR et al (2018) Shape and size control of substrate-grown gold nanoparticles for surface-enhanced Raman spectroscopy detection of chemical analytes. J Phys Chem C 122:2307–2314CrossRef Ashley MJ, Bourgeois MR, Murthy RR et al (2018) Shape and size control of substrate-grown gold nanoparticles for surface-enhanced Raman spectroscopy detection of chemical analytes. J Phys Chem C 122:2307–2314CrossRef
11.
go back to reference He S, Kyaw YME, Tan EKM et al (2018) Quantitative and label-free detection of protein kinase a activity based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem 90:6071–6080CrossRef He S, Kyaw YME, Tan EKM et al (2018) Quantitative and label-free detection of protein kinase a activity based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem 90:6071–6080CrossRef
12.
go back to reference Xu J, Wu D, Li Y, Xu J, Gao Z, Song Y-Y (2018) Plasmon-triggered hot-spot excitation on SERS substrates for bacterial inactivation and in situ monitoring. ACS Appl Mater Interfaces 10:25219–25227CrossRef Xu J, Wu D, Li Y, Xu J, Gao Z, Song Y-Y (2018) Plasmon-triggered hot-spot excitation on SERS substrates for bacterial inactivation and in situ monitoring. ACS Appl Mater Interfaces 10:25219–25227CrossRef
13.
go back to reference Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115:8896–8943CrossRef Zhu C, Du D, Eychmüller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115:8896–8943CrossRef
14.
go back to reference Lv W, Gu C, Zeng S, Han J, Jiang T, Zhou J (2018) One-pot synthesis of multi-branch gold nanoparticles and investigation of their SERS performance. Biosensors 8:113(1–10)CrossRef Lv W, Gu C, Zeng S, Han J, Jiang T, Zhou J (2018) One-pot synthesis of multi-branch gold nanoparticles and investigation of their SERS performance. Biosensors 8:113(1–10)CrossRef
15.
go back to reference Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C (2017) Dual quantification of MicroRNAs and telomerase in living cells. J Am Chem Soc 139:11752–11759CrossRef Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C (2017) Dual quantification of MicroRNAs and telomerase in living cells. J Am Chem Soc 139:11752–11759CrossRef
16.
go back to reference Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 109:12544–12548CrossRef Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 109:12544–12548CrossRef
17.
go back to reference Jiang T, Chen G, Tian X, Tang S, Zhou J, Feng Y, Chen H (2018) Construction of long narrow gaps in Ag nanoplates. J Am Chem Soc 140:15560–15563CrossRef Jiang T, Chen G, Tian X, Tang S, Zhou J, Feng Y, Chen H (2018) Construction of long narrow gaps in Ag nanoplates. J Am Chem Soc 140:15560–15563CrossRef
18.
go back to reference Li H, Yang Q, Hou J, Li Y, Li M, Song Y (2018) Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection. Adv Funct Mater 28:1800448(1–7) Li H, Yang Q, Hou J, Li Y, Li M, Song Y (2018) Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection. Adv Funct Mater 28:1800448(1–7)
19.
go back to reference Liu Z (2017) One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat Commun 8:14910(1–7) Liu Z (2017) One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat Commun 8:14910(1–7)
20.
go back to reference Yin G, Bai S, Tu X et al (2019) Highly sensitive and stable SERS substrate fabricated by Co-sputtering and atomic layer deposition. Nanoscale Res Lett 14:168CrossRef Yin G, Bai S, Tu X et al (2019) Highly sensitive and stable SERS substrate fabricated by Co-sputtering and atomic layer deposition. Nanoscale Res Lett 14:168CrossRef
21.
go back to reference Zhou S, Zhao M, Yang T-H, Xia Y (2019) Decahedral nanocrystals of noble metals: synthesis, characterization, and applications. Mater Today 22:108–131CrossRef Zhou S, Zhao M, Yang T-H, Xia Y (2019) Decahedral nanocrystals of noble metals: synthesis, characterization, and applications. Mater Today 22:108–131CrossRef
22.
go back to reference Sun L, Yu Z, Lin M (2019) Synthesis of polyhedral gold nanostars as surface-enhanced raman spectroscopy substrates for measurement of thiram in peach juice. Analyst 144:4820–4825CrossRef Sun L, Yu Z, Lin M (2019) Synthesis of polyhedral gold nanostars as surface-enhanced raman spectroscopy substrates for measurement of thiram in peach juice. Analyst 144:4820–4825CrossRef
23.
go back to reference Cao Y-Q, Qin K, Zhu L, Qian X, Zhang X-J, Wu D, Li A-D (2017) Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced Raman scattering. Sci. Rep 7:5161(7–8) Cao Y-Q, Qin K, Zhu L, Qian X, Zhang X-J, Wu D, Li A-D (2017) Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced Raman scattering. Sci. Rep 7:5161(7–8)
24.
go back to reference Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzán LM (2018) Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12:8531–8539CrossRef Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzán LM (2018) Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12:8531–8539CrossRef
25.
go back to reference Zhou S, Li J, Gilroy KD et al (2016) Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 10:9861–9870CrossRef Zhou S, Li J, Gilroy KD et al (2016) Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 10:9861–9870CrossRef
26.
go back to reference Lin D, Wu Z, Li S et al (2017) Large-area au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 11:1478–1487CrossRef Lin D, Wu Z, Li S et al (2017) Large-area au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 11:1478–1487CrossRef
27.
go back to reference Chen H-C, Hsu T-C, Liu Y-C, Yang K-H (2014) Surfactant-assisted preparation of surface-enhanced Raman scattering-active substrates. RSC Adv. 4:10553–10559CrossRef Chen H-C, Hsu T-C, Liu Y-C, Yang K-H (2014) Surfactant-assisted preparation of surface-enhanced Raman scattering-active substrates. RSC Adv. 4:10553–10559CrossRef
28.
go back to reference Wall MA, Harmsen S, Pal S et al (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29:1605622(1–8) Wall MA, Harmsen S, Pal S et al (2017) Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29:1605622(1–8)
29.
go back to reference Cong S, Yuan Y, Chen Z et al (2017) Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun 6:7800(1–7) Cong S, Yuan Y, Chen Z et al (2017) Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun 6:7800(1–7)
30.
go back to reference Zheng Z, Cong S, Gong W et al (2017) Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Comm 8:1993(1–10) Zheng Z, Cong S, Gong W et al (2017) Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Comm 8:1993(1–10)
31.
go back to reference Zhou C, Sun L, Zhang F et al (2019) Electrical tuning of the SERS enhancement by precise defect density control. ACS Appl Mater Interfaces 11:34091–34099CrossRef Zhou C, Sun L, Zhang F et al (2019) Electrical tuning of the SERS enhancement by precise defect density control. ACS Appl Mater Interfaces 11:34091–34099CrossRef
32.
go back to reference Wu H, Wang H, Li G (2017) Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 142:326–335CrossRef Wu H, Wang H, Li G (2017) Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 142:326–335CrossRef
33.
go back to reference Johansson MB, Mattsson A, Lindquist S-E, Niklasson GA, Österlund L (2017) The importance of oxygen vacancies in nanocrystalline WO3–x thin films prepared by DC magnetron sputtering for achieving high photoelectrochemical efficiency. J Phys Chem C 121:7412–7420CrossRef Johansson MB, Mattsson A, Lindquist S-E, Niklasson GA, Österlund L (2017) The importance of oxygen vacancies in nanocrystalline WO3–x thin films prepared by DC magnetron sputtering for achieving high photoelectrochemical efficiency. J Phys Chem C 121:7412–7420CrossRef
34.
go back to reference Sun L, Hu H, Zhan D et al (2014) Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10:1090–1095CrossRef Sun L, Hu H, Zhan D et al (2014) Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10:1090–1095CrossRef
35.
go back to reference Lu Z, Si H, Li Z et al (2018) Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis. Opt Express 26:21626(1–6) Lu Z, Si H, Li Z et al (2018) Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis. Opt Express 26:21626(1–6)
36.
go back to reference Zhang Q, Li X, Ma Q et al (2017) A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat Commun 8:14093CrossRef Zhang Q, Li X, Ma Q et al (2017) A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat Commun 8:14093CrossRef
37.
go back to reference Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S (2013) Surface-enhanced Raman scattering spectra of adsorbates on Cu2O Nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5:2784–2789CrossRef Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S (2013) Surface-enhanced Raman scattering spectra of adsorbates on Cu2O Nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5:2784–2789CrossRef
38.
go back to reference Zheng X, Ren F, Zhang S et al (2017) A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity. ACS Appl Mater Interfaces 9:14534–14544CrossRef Zheng X, Ren F, Zhang S et al (2017) A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity. ACS Appl Mater Interfaces 9:14534–14544CrossRef
39.
go back to reference Prabhu BR, Bramhaiah K, Singh KK, John NS (2019) Single sea Urchin–MoO3 nanostructure for surface enhanced Raman spectroscopy of dyes. Nanosc Adv 1:2426–2434CrossRef Prabhu BR, Bramhaiah K, Singh KK, John NS (2019) Single sea Urchin–MoO3 nanostructure for surface enhanced Raman spectroscopy of dyes. Nanosc Adv 1:2426–2434CrossRef
40.
go back to reference Zhan Y, Liu Y, Zu H et al (2018) Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale 10:5997–6004CrossRef Zhan Y, Liu Y, Zu H et al (2018) Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale 10:5997–6004CrossRef
41.
go back to reference Song G, Shen J, Jiang F et al (2014) Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces 6:3915–3922CrossRef Song G, Shen J, Jiang F et al (2014) Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces 6:3915–3922CrossRef
42.
go back to reference Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sens Actuators B: Chem 259:59–63CrossRef Li R, An H, Huang W, He Y (2018) Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sens Actuators B: Chem 259:59–63CrossRef
43.
go back to reference Wang J, Yang Y, Li H et al (2019) Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem Sci 10:6330–6335CrossRef Wang J, Yang Y, Li H et al (2019) Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem Sci 10:6330–6335CrossRef
44.
go back to reference Zhang BY, Zavabeti A, Chrimes AF et al (2018) Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv Funct Mater 28:1706006CrossRef Zhang BY, Zavabeti A, Chrimes AF et al (2018) Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv Funct Mater 28:1706006CrossRef
45.
go back to reference Guo Y, Zhuang Z, Liu Z et al (2019) Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles. Appl Surf Sci 480:1162–1170CrossRef Guo Y, Zhuang Z, Liu Z et al (2019) Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles. Appl Surf Sci 480:1162–1170CrossRef
46.
go back to reference Liang X, Zhang X-J, You T-T, Wang G-S, Yin P-G, Guo L (2016) Controlled assembly of one-dimensional MoO3@Au hybrid nanostructures as SERS substrates for sensitive melamine detection. CrystEngComm 18:7805–7813CrossRef Liang X, Zhang X-J, You T-T, Wang G-S, Yin P-G, Guo L (2016) Controlled assembly of one-dimensional MoO3@Au hybrid nanostructures as SERS substrates for sensitive melamine detection. CrystEngComm 18:7805–7813CrossRef
47.
go back to reference Kumar S, Lodhi DK, Singh JP (2016) Highly sensitive multifunctional recyclable Ag–TiO2 nanorod SERS substrates for photocatalytic degradation and detection of dye molecules. RSC Adv 6:45120–45126CrossRef Kumar S, Lodhi DK, Singh JP (2016) Highly sensitive multifunctional recyclable Ag–TiO2 nanorod SERS substrates for photocatalytic degradation and detection of dye molecules. RSC Adv 6:45120–45126CrossRef
48.
go back to reference Jiang X, Sun X, Yin D et al (2017) Recyclable Au–TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys Chem Chem Phys 19:11212–11219CrossRef Jiang X, Sun X, Yin D et al (2017) Recyclable Au–TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys Chem Chem Phys 19:11212–11219CrossRef
49.
go back to reference Huang J, Ma D, Chen F, Chen D, Bai M, Xu K, Zhao Y (2017) Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing. ACS Appl Mater Interfaces 9:7436–7446CrossRef Huang J, Ma D, Chen F, Chen D, Bai M, Xu K, Zhao Y (2017) Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive SERS sensing. ACS Appl Mater Interfaces 9:7436–7446CrossRef
50.
go back to reference Zhou YF, Bi K, Wan L et al (2015) Enhanced adsorption and photocatalysis properties of molybdenum oxide ultrathin nanobelts. Mate. Lett. 154:132–135CrossRef Zhou YF, Bi K, Wan L et al (2015) Enhanced adsorption and photocatalysis properties of molybdenum oxide ultrathin nanobelts. Mate. Lett. 154:132–135CrossRef
51.
go back to reference Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D, Ma X (2019) MoO3 nanosheet-assisted photochemical reduction synthesis of Au nanoparticles for surface-enhanced Raman scattering substrates. Sens Actuators B: Chem 279:320–326CrossRef Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D, Ma X (2019) MoO3 nanosheet-assisted photochemical reduction synthesis of Au nanoparticles for surface-enhanced Raman scattering substrates. Sens Actuators B: Chem 279:320–326CrossRef
52.
go back to reference Yuksel R, Coskun S, Unalan HE (2016) Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes. Electrochim Acta 193:39–44CrossRef Yuksel R, Coskun S, Unalan HE (2016) Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes. Electrochim Acta 193:39–44CrossRef
53.
go back to reference Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3−x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J 18:15283–15287CrossRef Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3−x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J 18:15283–15287CrossRef
54.
go back to reference Fodjo EK, Li D-W, Marius NP, Albert T, Long Y-T (2013) Low temperature synthesis and SERS application of silver molybdenum oxides. J Mater Chem A 1:2558–2566CrossRef Fodjo EK, Li D-W, Marius NP, Albert T, Long Y-T (2013) Low temperature synthesis and SERS application of silver molybdenum oxides. J Mater Chem A 1:2558–2566CrossRef
55.
go back to reference Kleinman SL, Frontiera RR, Henry A-I, Dieringer JA, Van Duyne RP (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15:21–36CrossRef Kleinman SL, Frontiera RR, Henry A-I, Dieringer JA, Van Duyne RP (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15:21–36CrossRef
56.
go back to reference Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light, Angew. Chem Int Ed 53:2910–2914CrossRef Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light, Angew. Chem Int Ed 53:2910–2914CrossRef
57.
go back to reference Lin S, Hasi W-L-J, Lin X et al (2015) Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294CrossRef Lin S, Hasi W-L-J, Lin X et al (2015) Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294CrossRef
58.
go back to reference Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on Au-Coated ZnO nanorods. ACS Appl Mater Interfaces 3:2557–2563CrossRef Sinha G, Depero LE, Alessandri I (2011) Recyclable SERS substrates based on Au-Coated ZnO nanorods. ACS Appl Mater Interfaces 3:2557–2563CrossRef
Metadata
Title
UV-light-assisted preparation of MoO3−x/Ag NPs film and investigation on the SERS performance
Authors
Zhiqiang Niu
Canliang Zhou
Jiawei Wang
Yinghao Xu
Chenjie Gu
Tao Jiang
Shuwen Zeng
Yonghui Zhang
Diing Shenp Ang
Jun Zhou
Publication date
20-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04669-5

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners