Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

20-04-2020 | Chemical routes to materials | Issue 21/2020

Journal of Materials Science 21/2020

UV-light-assisted preparation of MoO3−x/Ag NPs film and investigation on the SERS performance

Journal:
Journal of Materials Science > Issue 21/2020
Authors:
Zhiqiang Niu, Canliang Zhou, Jiawei Wang, Yinghao Xu, Chenjie Gu, Tao Jiang, Shuwen Zeng, Yonghui Zhang, Diing Shenp Ang, Jun Zhou
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10853-020-04669-5) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Surface-enhanced Raman scattering (SERS) technique is a powerful spectrum analysis technique for the ultra-low molecular trace detection. Conventionally, noble metals like silver (Ag) and gold (Au) are used to prepare the SERS substrates; however, limitations of complicated experimental designs and sophisticated process steps impede their wide applications in practice. Recently, metal oxides arise as a promising material for SERS application, but relatively weak Raman signal enhancement and poor material stability still pose as a challenge. Here, a UV-light-assisted fabrication of MoO3−x/silver nanoparticles (MoO3−x/Ag NPs) film is proposed. In the experiment, the sub-transition-metal-oxide of MoO3−x was used as the Raman chemical enhancement substrate as well as the reducing agent. Through the spin-coating of MoO3−x layer on the silicon substrate and UV-light-assisted reduction of silver nitride (AgNO3) on the MoO3−x layer, a novel MoO3−x/Ag NPs one-layer film was fabricated. Using the Rhodamine B (RhB) as the Raman reporter, SERS measurement shows that enhancement factor (EF) of 1.195 × 106 could be achieved. Moreover, a Raman signal amplifying strategy is further demonstrated by constructing MoO3−x/Ag NPs multi-layer films. And result evidences that maximum gain of 2.07 for the RhB Raman peak at 1280 cm−1 can be obtained on the MoO3−x/Ag NPs three-layer film when referred to that on the MoO3−x/Ag NPs one-layer film. Meanwhile, the EF of the MoO3−x/Ag NPs three-layer film is also improved to 2.985 × 106, giving the minimum detectable concentration of 10−9 M.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners

    Image Credits