Skip to main content
Top

2021 | OriginalPaper | Chapter

Validation of a Simple Empirical Model for Calculating the Vibration of Flat Plates Excited by Incompressible Homogeneous Turbulent Boundary Layer Flow

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The vibration responses of three flat rectangular plates excited by turbulent boundary layer flow are calculated and compared to measured data. The measurements were made in three different facilities by Wilby at ISVR [1] (high speeds typical of aircraft), Han at Purdue University [2] (moderate speeds typical of automobiles), and Robin at University of Sherbrooke [3] (lowest speeds), spanning 50 years of time. The plates are different sizes, made from different materials, and have different boundary conditions. The boundary layers have different heights and flow speeds. The ratios of plate flexural and convective wavenumbers kb/kc over the three cases range from about 0.1 to 2. Plate vibrations are normalized by wall pressure fluctuation autospectra measured by the previous investigators. This wide range of structural and flow conditions and the use of plate vibration spectra normalized by wall pressure autospectra allows for an objective assessment of various TBL wall pressure fluctuation cross-spectral empirical models. Two cross-spectral models are considered: the widely used Corcos model [4] and the less well-known elliptical extension by Mellen [5]. Smolyakov’s empirical models for convection velocity and streamwise and spanwise surface pressure length scales [6] supplement the Corcos and Mellen models. Calculations using the Corcos cross-spectral model overestimate the vibrations by about an order of magnitude at lower speed (and lower kb/kc) conditions. Including Smolyakov’s convection velocity and length scale formulations improves accuracy at low frequencies. The Mellen cross-spectral pressure model, supplemented with Smolyakov’s empirical models for convective wave speed and streamwise and spanwise surface pressure length scales, is therefore well suited for calculating plate vibrations due to TBL flows with flow speed/flexural wave speed ratios ranging from 0.1 to 2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J.F. Wilby, The response of simple panels to turbulent boundary layer excitation, October 1967. Technical Report AFFDL-TR-67-70 (1967) J.F. Wilby, The response of simple panels to turbulent boundary layer excitation, October 1967. Technical Report AFFDL-TR-67-70 (1967)
2.
go back to reference F. Han, Prediction of flow-induced sound and vibration using the energy flow analysis method. Ph.D. thesis, Purdue University (1999) F. Han, Prediction of flow-induced sound and vibration using the energy flow analysis method. Ph.D. thesis, Purdue University (1999)
3.
go back to reference O. Robin et al., Exact Geometric Similitude Laws for Flat Plate Vibrations Induced by a Turbulent Boundary Layer (Springer, Flinovia II, 2019)CrossRef O. Robin et al., Exact Geometric Similitude Laws for Flat Plate Vibrations Induced by a Turbulent Boundary Layer (Springer, Flinovia II, 2019)CrossRef
4.
go back to reference G.M. Corcos, Resolution of pressure in turbulence. JASA 35 (1963) G.M. Corcos, Resolution of pressure in turbulence. JASA 35 (1963)
5.
go back to reference R.H. Mellen, On modeling convective turbulence. JASA 88(6) (1990) R.H. Mellen, On modeling convective turbulence. JASA 88(6) (1990)
6.
go back to reference A.V. Smol’yakov, A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52(3), 331–337 (2006) A.V. Smol’yakov, A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52(3), 331–337 (2006)
7.
go back to reference Y.F. Hwang, W.K. Bonness, S.A. Hambric, On modeling structural excitations by low speed turbulent boundary layer flows. ARL/Penn State Technical Report 03-008, DTIC Accession Number ADA465806 (2003) Y.F. Hwang, W.K. Bonness, S.A. Hambric, On modeling structural excitations by low speed turbulent boundary layer flows. ARL/Penn State Technical Report 03-008, DTIC Accession Number ADA465806 (2003)
8.
go back to reference Y.F. Hwang, W.K. Bonness, S.A. Hambric, Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319, 199–217 (2009)CrossRef Y.F. Hwang, W.K. Bonness, S.A. Hambric, Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319, 199–217 (2009)CrossRef
9.
go back to reference W.R. Graham, A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206(4), 541–565 (1997)CrossRef W.R. Graham, A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206(4), 541–565 (1997)CrossRef
10.
go back to reference M.K. Bull, Wall pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719–754 (1967)CrossRef M.K. Bull, Wall pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719–754 (1967)CrossRef
11.
go back to reference M.K. Bull, Wall-pressure fluctuations beneath turbulent boundary layers: Some reflections on forty years of research. J. Sound Vib. 190(3), 299–315 (1996)CrossRef M.K. Bull, Wall-pressure fluctuations beneath turbulent boundary layers: Some reflections on forty years of research. J. Sound Vib. 190(3), 299–315 (1996)CrossRef
12.
go back to reference D.M. Chase, Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70(1), 29–67 (1980)CrossRef D.M. Chase, Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70(1), 29–67 (1980)CrossRef
13.
go back to reference D.M. Chase, The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112(1), 125–147 (1987)CrossRef D.M. Chase, The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112(1), 125–147 (1987)CrossRef
14.
go back to reference P.D. Lysak, W.K. Bonness, J.B. Fahnline, Low Wavenumber Models for Turbulent Boundary Layer Excitation of Structures, Flinovia II (Springer, 2019) P.D. Lysak, W.K. Bonness, J.B. Fahnline, Low Wavenumber Models for Turbulent Boundary Layer Excitation of Structures, Flinovia II (Springer, 2019)
15.
go back to reference W.K. Bonness, D.E. Capone, S.A. Hambric, Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. J. Sound Vib. 329, 4166–4180 (2010)CrossRef W.K. Bonness, D.E. Capone, S.A. Hambric, Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. J. Sound Vib. 329, 4166–4180 (2010)CrossRef
16.
go back to reference R. DeJong, R. Tubergen, A comprehensive model for the turbulent boundary layer pressure spectrum, in Proceedings of Inter-Noise 2019, 16–19 June 2019, Madrid, Spain (2019) R. DeJong, R. Tubergen, A comprehensive model for the turbulent boundary layer pressure spectrum, in Proceedings of Inter-Noise 2019, 16–19 June 2019, Madrid, Spain (2019)
17.
go back to reference R. DeJong, Chase vs. Corcos TBL Loading, Flinovia III (Springer, 2021) R. DeJong, Chase vs. Corcos TBL Loading, Flinovia III (Springer, 2021)
18.
go back to reference B.M. Abraham, W.L. Keith, Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra. ASME J. Fluids Eng. 120, 29–39 (1998)CrossRef B.M. Abraham, W.L. Keith, Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra. ASME J. Fluids Eng. 120, 29–39 (1998)CrossRef
19.
go back to reference S.A. Hambric, Y.F. Hwang, W.K. Bonness, Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow. J. Fluids Struct. 19, 93–110 (2004)CrossRef S.A. Hambric, Y.F. Hwang, W.K. Bonness, Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow. J. Fluids Struct. 19, 93–110 (2004)CrossRef
20.
go back to reference S.A. Hambric, D.A. Boger, J.B. Fahnline, R.L. Campbell, Structure- and fluid-borne acoustic power sources induced by turbulent flow in 90 degree piping elbows. J. Fluids Struct. 26, 121–147 (2010)CrossRef S.A. Hambric, D.A. Boger, J.B. Fahnline, R.L. Campbell, Structure- and fluid-borne acoustic power sources induced by turbulent flow in 90 degree piping elbows. J. Fluids Struct. 26, 121–147 (2010)CrossRef
21.
go back to reference W.K. Bonness, J.B. Fahnline, P.D. Lysak, M.R. Shepherd, Modal forcing functions for structural vibration from turbulent boundary layer flow. J. Sound Vib. 395, 224–239 (2017)CrossRef W.K. Bonness, J.B. Fahnline, P.D. Lysak, M.R. Shepherd, Modal forcing functions for structural vibration from turbulent boundary layer flow. J. Sound Vib. 395, 224–239 (2017)CrossRef
22.
go back to reference M. Karimi, P. Croaker, L. Maxit, O. Robin, A. Skvortsov, S. Marburg, N. Kessissoglou, A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer. J. Fluids Struct. 92 (2020) M. Karimi, P. Croaker, L. Maxit, O. Robin, A. Skvortsov, S. Marburg, N. Kessissoglou, A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer. J. Fluids Struct. 92 (2020)
23.
go back to reference E. Cohen, X. Gloerfelt, Influence of pressure gradients on wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 838, 715–758 (2018)MathSciNetCrossRef E. Cohen, X. Gloerfelt, Influence of pressure gradients on wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 838, 715–758 (2018)MathSciNetCrossRef
24.
go back to reference M. Goody, Empirical spectral model of surface pressure fluctuations. AIAA J. 42, 1788–1794 (2004)CrossRef M. Goody, Empirical spectral model of surface pressure fluctuations. AIAA J. 42, 1788–1794 (2004)CrossRef
25.
go back to reference M.S. Howe, Acoustics of Fluid-Structure Interactions (Cambridge University Press, Cambridge, 1998), pp. 207–209 M.S. Howe, Acoustics of Fluid-Structure Interactions (Cambridge University Press, Cambridge, 1998), pp. 207–209
26.
go back to reference P.D. Lysak, Modeling the wall pressure spectrum in turbulent pipe flows. J. Fluids Eng. 128(2), 216–222 (2006)CrossRef P.D. Lysak, Modeling the wall pressure spectrum in turbulent pipe flows. J. Fluids Eng. 128(2), 216–222 (2006)CrossRef
Metadata
Title
Validation of a Simple Empirical Model for Calculating the Vibration of Flat Plates Excited by Incompressible Homogeneous Turbulent Boundary Layer Flow
Authors
Stephen Hambric
Peter Lysak
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-64807-7_4

Premium Partners