Skip to main content
Top

2019 | OriginalPaper | Chapter

13. Validation of Lightweight Antenna Reflector Model for Environmental Acoustic Testing Operating Conditions

Authors : M. Alvarez Blanco, R. Hallez, A. Carrella, K. Janssens, B. Peeters

Published in: Model Validation and Uncertainty Quantification, Volume 3

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Environmental testing is required in the space industry to evaluate the survivability of space hardware to the launch environment. Such hardware is designed according to high demands in terms of performance and lightweight (e.g. aiming to maximise the payload weight and increase fuel efficiency). Solar panels and antenna reflectors, typically made of carbon fiber reinforced polymers and honeycomb, are examples of sub-systems presenting large surfaces of lightweight materials which are particularly sensitive to acoustic loads. Environmental acoustic testing consists in reproducing the acoustic field of a Launch Vehicle (LV) with acoustic power distribution comparable to the operating conditions. The standard way to reproduce the acoustic loading is the so-called Reverberant Field Acoustic eXcitation (RFAX) test, which is a rather costly and time consuming test method. Therefore, at sub-system level, other dynamic tests than acoustic (especially those for model validation) are performed only if strictly necessary. An alternative to RFAX is Direct Field Acoustic eXcitation (DFAX) testing. This test method has emerged as a more cost-efficient qualification technique which, in addition, presents features to potentially improve the reproducibility of the launch environment (e.g. explicit setting of the acoustic field spatial correlation properties). In this paper, Operational Modal Analysis (OMA) is applied aiming to determine the dynamic characteristics of a parabolic-shape antenna reflector for DFAX operating conditions. This approach explores the possibility to exploit data collected during qualification tests also for modal model validation purposes. The objective of this research is the validation of the lightweight antenna reflector model by correlating numerical modal analysis results against OMA results. Modal-based correlation techniques followed by sensitivity analysis, help on error localisation and on the selection of proper model updating parameters. Then, the output of this correlation study allows updating the model, bringing the numerical modal model in better agreement with the experimental data acquired during the environmental acoustic test.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peeters, B., Alvarez Blanco, M., Musella, U., Waimer, S., Di Lorenzo, E., Carrella, A.: Identifying the structural behaviour of a specimen during spacecraft acoustic testing by operational modal analysis. In: 7th International Operational Modal Analysis Conference (2017) Peeters, B., Alvarez Blanco, M., Musella, U., Waimer, S., Di Lorenzo, E., Carrella, A.: Identifying the structural behaviour of a specimen during spacecraft acoustic testing by operational modal analysis. In: 7th International Operational Modal Analysis Conference (2017)
2.
go back to reference Larkin, P.: Developments in direct-field acoustic testing. J. Sound Vib. (2014) Larkin, P.: Developments in direct-field acoustic testing. J. Sound Vib. (2014)
3.
go back to reference Merric, A., Markowicz, B.: Direct field acoustic testing at SSL. In: 29th Aerospace Testing Seminar (2015) Merric, A., Markowicz, B.: Direct field acoustic testing at SSL. In: 29th Aerospace Testing Seminar (2015)
4.
go back to reference Bo, Z., Zuluaga, W., Fechete, L.: Direct field acoustic noise test of a solar wing, a pathfinder test for SSL. In: 29th Aerospace Testing Seminar (2015) Bo, Z., Zuluaga, W., Fechete, L.: Direct field acoustic noise test of a solar wing, a pathfinder test for SSL. In: 29th Aerospace Testing Seminar (2015)
5.
go back to reference Brévart, B., Fabries, C., Carrella, A., Janssens, J., Debille, J.: Direct field acoustic experiment on satellite subsystem. In: 29th Aerospace Testing Seminar (2015) Brévart, B., Fabries, C., Carrella, A., Janssens, J., Debille, J.: Direct field acoustic experiment on satellite subsystem. In: 29th Aerospace Testing Seminar (2015)
6.
go back to reference Kolaini, A., Doty, B., Chang, Z.: Reverberant acoustic testing and direct field acoustic testing: acoustic standing waves and their impact on structural responses. In: Spacecraft and Launch Vehicle Dynamic Environments Workshop (2012) Kolaini, A., Doty, B., Chang, Z.: Reverberant acoustic testing and direct field acoustic testing: acoustic standing waves and their impact on structural responses. In: Spacecraft and Launch Vehicle Dynamic Environments Workshop (2012)
7.
go back to reference Fabries, C., Brevart, B., Carrella, A., Alvarez Blanco, M., Dal Fitto, D., Scharfenberg, S.: Experimental validation of direct field acoustic testing. In: 14th European Conference on Spacecraft Structures, Materials and Environmental Testing (2016) Fabries, C., Brevart, B., Carrella, A., Alvarez Blanco, M., Dal Fitto, D., Scharfenberg, S.: Experimental validation of direct field acoustic testing. In: 14th European Conference on Spacecraft Structures, Materials and Environmental Testing (2016)
8.
go back to reference Jacobsen, F., Roisin, T.: The coherence of reverberant sound fields. J. Acoust. Soc. Am. 108(1), 204–210 (2000)CrossRef Jacobsen, F., Roisin, T.: The coherence of reverberant sound fields. J. Acoust. Soc. Am. 108(1), 204–210 (2000)CrossRef
9.
go back to reference Schultz, T.: Diffusion in reverberation rooms. J. Sound Vib. 16(1), 17–28 (1971)CrossRef Schultz, T.: Diffusion in reverberation rooms. J. Sound Vib. 16(1), 17–28 (1971)CrossRef
10.
go back to reference Jacobsen, F.: The diffuse soundfield. Report No. 27, Acoustics Laboratory, Technical University of Denmark (1979) Jacobsen, F.: The diffuse soundfield. Report No. 27, Acoustics Laboratory, Technical University of Denmark (1979)
11.
go back to reference Elliott, S.J., Cédric, M., Gardonio, P.: The synthesis of spatially correlated random pressure fields. J. Acoust. Soc. Am. 117(3), 1186–1201 (2005)CrossRef Elliott, S.J., Cédric, M., Gardonio, P.: The synthesis of spatially correlated random pressure fields. J. Acoust. Soc. Am. 117(3), 1186–1201 (2005)CrossRef
12.
go back to reference Kolaini, A.R., O’Connell, M.R., Tsoi, W.B.: Acoustically induced vibration of structures: reverberant vs. direct acoustic testing. In: Aerospace Testing Conference (2009) Kolaini, A.R., O’Connell, M.R., Tsoi, W.B.: Acoustically induced vibration of structures: reverberant vs. direct acoustic testing. In: Aerospace Testing Conference (2009)
13.
go back to reference Veit, I., Sander, H.: Production of spatially limited diffuse sound field in an anechoic room. Audio Eng. Soc. 35(3), 138–143 (1987) Veit, I., Sander, H.: Production of spatially limited diffuse sound field in an anechoic room. Audio Eng. Soc. 35(3), 138–143 (1987)
14.
go back to reference Alvarez Blanco, M., Janssens, K., Bianciardi, F.: Experimental verification of projection algorithms and optimization routines for acoustic field uniformity enhancement in MIMO direct field acoustic control. In: ISMA International Conference on Noise and Vibration Engineering (2016) Alvarez Blanco, M., Janssens, K., Bianciardi, F.: Experimental verification of projection algorithms and optimization routines for acoustic field uniformity enhancement in MIMO direct field acoustic control. In: ISMA International Conference on Noise and Vibration Engineering (2016)
15.
go back to reference Alvarez Blanco, M., Janssens, K., Bianciardi, F.: Target spectrum matrix definition for multiple-input-multiple-output control strategies applied on direct-field-acoustic-excitation tests. In: 13th International Conference on Motion and Vibration Control (2016) Alvarez Blanco, M., Janssens, K., Bianciardi, F.: Target spectrum matrix definition for multiple-input-multiple-output control strategies applied on direct-field-acoustic-excitation tests. In: 13th International Conference on Motion and Vibration Control (2016)
16.
go back to reference Center of Aerospace Structures, University of Colorado Boulder, on-line (2017) Center of Aerospace Structures, University of Colorado Boulder, on-line (2017)
17.
go back to reference Wijker, J.: Random Vibration in Spacecraft Structures Design. Springer (2009) Wijker, J.: Random Vibration in Spacecraft Structures Design. Springer (2009)
18.
go back to reference Heinrich, W., Hennig, K.: Zufallsschwingungen mechanischer Systemen (1978) Heinrich, W., Hennig, K.: Zufallsschwingungen mechanischer Systemen (1978)
19.
go back to reference Cook, R., Waterhouse, R.V., Berendt, R.D., Edelman, S., Thompson, M.C.: Measurement of correlation coefficients in reverberant sound fields. J. Acoust. Soc. Am. 27(6), 1071–1077 (1955)CrossRef Cook, R., Waterhouse, R.V., Berendt, R.D., Edelman, S., Thompson, M.C.: Measurement of correlation coefficients in reverberant sound fields. J. Acoust. Soc. Am. 27(6), 1071–1077 (1955)CrossRef
20.
go back to reference Himelblau, H., Fuller, M.C., Sharton, T.D.: Assessment of space vehicle aeroacoustic vibration prediction, design and testing. In: McDonnell Douglas Aeronautics Company – NASA Contractor Report, CR-1596 (1970) Himelblau, H., Fuller, M.C., Sharton, T.D.: Assessment of space vehicle aeroacoustic vibration prediction, design and testing. In: McDonnell Douglas Aeronautics Company – NASA Contractor Report, CR-1596 (1970)
21.
go back to reference Shi, Q.: The effectiveness of reverberant acoustic test by investigating the sound characteristics and vibration responses in comparison between test and flight telemetry acoustic data. In: Aerospace Testing Seminar (2015) Shi, Q.: The effectiveness of reverberant acoustic test by investigating the sound characteristics and vibration responses in comparison between test and flight telemetry acoustic data. In: Aerospace Testing Seminar (2015)
22.
go back to reference Heylen, W., Lammens, S., Sas, P.: Modal analysis theory and testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium (2013) Heylen, W., Lammens, S., Sas, P.: Modal analysis theory and testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium (2013)
23.
go back to reference Peeters, B., Van der Auweraer, H., Vanhollebeke, F., Guillaume, P.: Operational modal analysis for estimating the dynamic properties of a stadium during a football game. J. Shock Vib. 11, 395–409 (2004)CrossRef Peeters, B., Van der Auweraer, H., Vanhollebeke, F., Guillaume, P.: Operational modal analysis for estimating the dynamic properties of a stadium during a football game. J. Shock Vib. 11, 395–409 (2004)CrossRef
24.
go back to reference Hermans, L., Van der Auweraer, H., Guillaume, P.: A frequency-domain maximum likelihood approach for the extraction of modal parameters from output-only data. In: ISMA International Conference on Noise and Vibration Engineering, pp. 367–376 (1998) Hermans, L., Van der Auweraer, H., Guillaume, P.: A frequency-domain maximum likelihood approach for the extraction of modal parameters from output-only data. In: ISMA International Conference on Noise and Vibration Engineering, pp. 367–376 (1998)
25.
go back to reference Hermans, L., Van der Auweraer, H.: Modal testing and analysis of structures under operational conditions: industrial applications. Mech. Syst. Signal Process. 13(2), 193–216 (1999)CrossRef Hermans, L., Van der Auweraer, H.: Modal testing and analysis of structures under operational conditions: industrial applications. Mech. Syst. Signal Process. 13(2), 193–216 (1999)CrossRef
27.
go back to reference Peeters, B., De Roeck, G.: Stochastic system identification for operational modal analysis: a review. ASME J. Dyn. Syst. Meas. Control. 123(4), 659–667 (2001)CrossRef Peeters, B., De Roeck, G.: Stochastic system identification for operational modal analysis: a review. ASME J. Dyn. Syst. Meas. Control. 123(4), 659–667 (2001)CrossRef
28.
go back to reference Di Lorenzo, E., Petrone, G., Manzato, S., Peeters, B., Desmet, W., Marulo, F.: Damage detection in wind turbine blades by using operational modal analysis. Struct. Health Monit. 15, 289–301 (2016)CrossRef Di Lorenzo, E., Petrone, G., Manzato, S., Peeters, B., Desmet, W., Marulo, F.: Damage detection in wind turbine blades by using operational modal analysis. Struct. Health Monit. 15, 289–301 (2016)CrossRef
29.
go back to reference Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11, 395–409 (2004)CrossRef Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11, 395–409 (2004)CrossRef
Metadata
Title
Validation of Lightweight Antenna Reflector Model for Environmental Acoustic Testing Operating Conditions
Authors
M. Alvarez Blanco
R. Hallez
A. Carrella
K. Janssens
B. Peeters
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-74793-4_13

Premium Partners