Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2023

03-11-2023

“Van Fo Fy Method” in the Micromechanics of Fibrous Composites

Authors: Yu. V. Kotin, A. N. Polilov, D. D. Vlasov

Published in: Mechanics of Composite Materials | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method for calculating the stress-strain state in “fiber-matrix” microstructures (“Van Fo Fy (VFF) method”) was developed by the famous scientist in mechanics G. A. Vanin. The method is based on the satisfaction of boundary conditions on the interfaces with application of series of derivatives of doubly-periodic elliptic Weierstrass functions. Problem solutions for various loading conditions of unidirectional fibrous composites have an analytical form expressed in functional series, but their calculation presents considerable difficulties, which, until recently, limited the application and development of the VFF-method. In this paper, in order to explain this method, the derivation of the basic micromechanics relations that make it possible to calculate the stress and strain fields in unidirectional composite structures and, on their basis, to estimate the effective elastic properties of composites with a double-periodic arrangement of fibers was briefly presented. The method also allows us to estimate other effective (averaged over the periodicity cell) physical properties: thermal conductivity, electrical conductivity, magnetic permeability, etc. VFF-method admits extension to multilevel hierarchically organized structures reflecting the structure of natural biocomposites. As illustrations, the paper presents solutions of the problems for unidirectional composites with circular fibers, although the method allows one to solve problems for elliptical, hollow, arbitrarily arranged fibers. For the numerical implementation of the method, which was not carried out before, the analytical relations obtained were brought to algorithms and programs by means of computer algebra. The results of calculations of microstress fields in composite structures with different variants of periodicity of arrangement of elementary cells were presented as the particular examples. Calculations by the VFF-method and the standard numerical finite element method were compared and a good agreement of the results was demonstrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. A. Vang Fo Fy, Theory of Reinforced Materials with Coatings [in Russian], Naukova Dumka, Kiev (1971). G. A. Vang Fo Fy, Theory of Reinforced Materials with Coatings [in Russian], Naukova Dumka, Kiev (1971).
2.
go back to reference G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985). G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985).
3.
go back to reference G. A. Vanin, “Gradient theory of shear for multilevel composites,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 120-128 (1995). G. A. Vanin, “Gradient theory of shear for multilevel composites,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 120-128 (1995).
4.
go back to reference G. A. Vanin, “Longitudinal shear and related problems,” Mech. Compos. Mater., 32, No. 1, 1-13 (1996).CrossRef G. A. Vanin, “Longitudinal shear and related problems,” Mech. Compos. Mater., 32, No. 1, 1-13 (1996).CrossRef
5.
go back to reference G. A. Vanin, “Gradient theory of a plane strain state of multilevel media,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 5-15 (1996). G. A. Vanin, “Gradient theory of a plane strain state of multilevel media,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 5-15 (1996).
6.
go back to reference G. A. Vanin, “Gradient theory of shear for multilevel composites,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 120-128 (1995). G. A. Vanin, “Gradient theory of shear for multilevel composites,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 120-128 (1995).
7.
go back to reference G. A. Vanin, “Mathematical modeling of composite materials states” [in Russian], Zav. Lab. Diagn. Mater., 64, No. 10. 53-58 (1998). G. A. Vanin, “Mathematical modeling of composite materials states” [in Russian], Zav. Lab. Diagn. Mater., 64, No. 10. 53-58 (1998).
8.
go back to reference G. A. Vanin, “Gradient theory of elasticity,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 46-53 (1999). G. A. Vanin, “Gradient theory of elasticity,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 46-53 (1999).
9.
go back to reference G. A. Vanin, “Elasticity of heterogeneous media with a hierarchy of structure,” [in Russian], Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 85-106 (2000). G. A. Vanin, “Elasticity of heterogeneous media with a hierarchy of structure,” [in Russian], Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 85-106 (2000).
10.
go back to reference G. A. Vanin, “Moment mechanics of composites,” Mech. Compos. Mater., 37, 395-420 (2001).CrossRef G. A. Vanin, “Moment mechanics of composites,” Mech. Compos. Mater., 37, 395-420 (2001).CrossRef
11.
go back to reference G. N. Savin, Stress Distribution Near the Holes [in Russian], Naukova Dumka, Kiev (1968). G. N. Savin, Stress Distribution Near the Holes [in Russian], Naukova Dumka, Kiev (1968).
12.
go back to reference E. I. Grigolyuk and L. A. Filshtinsky, Periodic Piecewise Homogeneous Elastic Structures [in Russian], Nauka, Moscow (1992). E. I. Grigolyuk and L. A. Filshtinsky, Periodic Piecewise Homogeneous Elastic Structures [in Russian], Nauka, Moscow (1992).
13.
go back to reference E. I. Grigolyuk and L. A. Filshtinsky, Regular Piecewise Homogeneous Structures with Defects [in Russian], Fizmatlit, Moscow (1994). E. I. Grigolyuk and L. A. Filshtinsky, Regular Piecewise Homogeneous Structures with Defects [in Russian], Fizmatlit, Moscow (1994).
14.
go back to reference C. P. Jiang, “A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application,” Mech. Mater., 36, No. 3, 225-237 (2004).CrossRef C. P. Jiang, “A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application,” Mech. Mater., 36, No. 3, 225-237 (2004).CrossRef
15.
go back to reference S. K. Kanaun and V. M. Levin, Method of Effective Field in the Mechanics of Composite Materials [in Russian], Izd. Petroz. Univ., Petrozavodsk (1993). S. K. Kanaun and V. M. Levin, Method of Effective Field in the Mechanics of Composite Materials [in Russian], Izd. Petroz. Univ., Petrozavodsk (1993).
16.
go back to reference J. Wang, S. L. Crouch, and S. G. Mogilevskaya, “Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases,” Compos. Sci. and Technol., 66, No. 1, 1-18 (2006).CrossRef J. Wang, S. L. Crouch, and S. G. Mogilevskaya, “Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases,” Compos. Sci. and Technol., 66, No. 1, 1-18 (2006).CrossRef
17.
go back to reference I. V. Andrianov, V. V. Danishevs’kyy, and A. L. Kalamkarov, “Micromechanical analysis of fiber-reinforced composites on account of influence of fiber coatings,” Composites, Part B, 39, No. 5, 874-881 (2008). I. V. Andrianov, V. V. Danishevs’kyy, and A. L. Kalamkarov, “Micromechanical analysis of fiber-reinforced composites on account of influence of fiber coatings,” Composites, Part B, 39, No. 5, 874-881 (2008).
18.
go back to reference I. V. Andrianov, V. V. Danishevs’kyy, A. Guillet, and Ph. Pareige, “Effective properties and micro-mechanical response of filamentary composite wires under longitudinal shear,” Eur. J. Mech. A/Solids, No. 24, 195-206 (2005). I. V. Andrianov, V. V. Danishevs’kyy, A. Guillet, and Ph. Pareige, “Effective properties and micro-mechanical response of filamentary composite wires under longitudinal shear,” Eur. J. Mech. A/Solids, No. 24, 195-206 (2005).
19.
go back to reference V. A. Mol`kov and B. Ye. Pobedrya, “Effective characteristics of a unidirectional fibrous composite with a periodic structure.” Mech. Solids, 20, No. 2, 117-127 (1985). V. A. Mol`kov and B. Ye. Pobedrya, “Effective characteristics of a unidirectional fibrous composite with a periodic structure.” Mech. Solids, 20, No. 2, 117-127 (1985).
23.
go back to reference M. Ghorbani, N. Poozzahed, and S. M. Amininasab, “Morphological, physical and mechanical properties of silanized wood-polymer composite,” J. Compos. Mater., 54, No. 11, 1-10 (2019). M. Ghorbani, N. Poozzahed, and S. M. Amininasab, “Morphological, physical and mechanical properties of silanized wood-polymer composite,” J. Compos. Mater., 54, No. 11, 1-10 (2019).
Metadata
Title
“Van Fo Fy Method” in the Micromechanics of Fibrous Composites
Authors
Yu. V. Kotin
A. N. Polilov
D. D. Vlasov
Publication date
03-11-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10138-2

Other articles of this Issue 5/2023

Mechanics of Composite Materials 5/2023 Go to the issue

Premium Partners