Skip to main content
Top
Published in: Computational Mechanics 1/2019

02-01-2019 | Original Paper

Variable-order fractional description of compression deformation of amorphous glassy polymers

Authors: Ruifan Meng, Deshun Yin, Corina S. Drapaca

Published in: Computational Mechanics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the variable order fractional constitutive model is adopted to describe the compression deformation of amorphous glassy polymers. In order to keep the fractional order within the definition of viscoelasticity, a three-regions- fitting-method is proposed. By using this, the value of fractional order is found to be a constant in viscoelastic region, and decreases linearly in both strain softening and strain hardening regions. The corresponding mechanical property evolution revealed by fractional order is proved to be reasonable based on the molecular chains conflict theory. And a comparison study is conducted to show the advantage of using the variable order fractional model with higher accuracy and fewer parameters. It is then concluded that the variable order fractional calculus is an efficient tool to predict the compression deformation of amorphous glassy polymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Matter 9:15–34CrossRef Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Matter 9:15–34CrossRef
2.
go back to reference Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999–1012MathSciNetCrossRefMATH Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999–1012MathSciNetCrossRefMATH
5.
go back to reference Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91:470–483CrossRefMATH Valério D, Da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Signal Process 91:470–483CrossRefMATH
6.
go back to reference Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85:1815–1823MathSciNetCrossRefMATH Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85:1815–1823MathSciNetCrossRefMATH
8.
go back to reference Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131:763–767CrossRef Ingman D, Suzdalnitsky J (2005) Application of differential operator with servo-order function in model of viscoelastic deformation process. J Eng Mech 131:763–767CrossRef
9.
go back to reference Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl Math Model 40:398–406MathSciNetCrossRef Meng R, Yin D, Zhou C, Wu H (2016) Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl Math Model 40:398–406MathSciNetCrossRef
10.
go back to reference Sudarkodi V, Basu S (2014) Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int J Plastic 56:139–155CrossRef Sudarkodi V, Basu S (2014) Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers. Int J Plastic 56:139–155CrossRef
11.
go back to reference Poluektov M, Van Dommelen JAW, Govaert LE, Yakimets I, Geers MGD (2013) Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate. Model Simul Mater Sci Eng 21:5015CrossRef Poluektov M, Van Dommelen JAW, Govaert LE, Yakimets I, Geers MGD (2013) Micromechanical modelling of short-term and long-term large-strain behaviour of polyethylene terephthalate. Model Simul Mater Sci Eng 21:5015CrossRef
12.
go back to reference Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat J (2015) Correlation of structure and mechanical response in solid-like polymers. J Phys: Condens Matter 27:194131 Jabbari-Farouji S, Rottler J, Lame O, Makke A, Perez M, Barrat J (2015) Correlation of structure and mechanical response in solid-like polymers. J Phys: Condens Matter 27:194131
13.
go back to reference Mahajan DK, Basu S (2010) Investigations into the applicability of rubber elastic analogy to hardening in glassy polymers. Model Simul Mater Sci 18:025001CrossRef Mahajan DK, Basu S (2010) Investigations into the applicability of rubber elastic analogy to hardening in glassy polymers. Model Simul Mater Sci 18:025001CrossRef
14.
go back to reference Nada H, Hara H, Tadano Y, Shizawa K (2015) Molecular chain plasticity model similar to crystal plasticity theory based on change in local free volume and FE simulation of glassy polymer. Int J Mech Sci 93:120–135CrossRef Nada H, Hara H, Tadano Y, Shizawa K (2015) Molecular chain plasticity model similar to crystal plasticity theory based on change in local free volume and FE simulation of glassy polymer. Int J Mech Sci 93:120–135CrossRef
15.
go back to reference Jancar J, Hoy RS, Jancarova E, Zidek J (2015) Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 63:196–207CrossRef Jancar J, Hoy RS, Jancarova E, Zidek J (2015) Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 63:196–207CrossRef
16.
go back to reference Van Melick H, Govaert LE, Raas B, Nauta WJ, Meijer H (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44:1171–1179CrossRef Van Melick H, Govaert LE, Raas B, Nauta WJ, Meijer H (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44:1171–1179CrossRef
17.
go back to reference Vorselaars B, Lyulin AV, Michels M (2009) Microscopic mechanisms of strain hardening in glassy polymers. Macromolecules 42:5829–5842CrossRef Vorselaars B, Lyulin AV, Michels M (2009) Microscopic mechanisms of strain hardening in glassy polymers. Macromolecules 42:5829–5842CrossRef
18.
go back to reference Van Melick H, Govaert LE, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493–2502CrossRef Van Melick H, Govaert LE, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44:2493–2502CrossRef
19.
go back to reference Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44:3487–3500CrossRef Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44:3487–3500CrossRef
20.
go back to reference Nguyen V, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216CrossRef Nguyen V, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216CrossRef
21.
go back to reference Voyiadjis GZ, Samadi-Dooki A (2016) Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J Appl Phys 119:225104CrossRef Voyiadjis GZ, Samadi-Dooki A (2016) Constitutive modeling of large inelastic deformation of amorphous polymers: free volume and shear transformation zone dynamics. J Appl Phys 119:225104CrossRef
22.
go back to reference Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39:39–52CrossRef Dupaix RB, Boyce MC (2007) Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech Mater 39:39–52CrossRef
23.
go back to reference Zaïri F, Naït-Abdelaziz M, Gloaguen J, Lefebvre J (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Int J Plastic 27:25–51CrossRef Zaïri F, Naït-Abdelaziz M, Gloaguen J, Lefebvre J (2011) A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. Int J Plastic 27:25–51CrossRef
24.
go back to reference Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre J (2010) Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly (methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction. Model Simul Mater Sci 18:055004CrossRef Zaïri F, Naït-Abdelaziz M, Gloaguen JM, Lefebvre J (2010) Constitutive modelling of the large inelastic deformation behaviour of rubber-toughened poly (methyl methacrylate): effects of strain rate, temperature and rubber-phase volume fraction. Model Simul Mater Sci 18:055004CrossRef
25.
go back to reference Voyiadjis GZ, Shojaei A, Li G (2012) A generalized coupled viscoplastic—viscodamage—viscohealing theory for glassy polymers. Int J Plast 28:21–45CrossRef Voyiadjis GZ, Shojaei A, Li G (2012) A generalized coupled viscoplastic—viscodamage—viscohealing theory for glassy polymers. Int J Plast 28:21–45CrossRef
26.
go back to reference Bouvard J, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168–193CrossRef Bouvard J, Francis DK, Tschopp MA, Marin EB, Bammann DJ, Horstemeyer MF (2013) An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int J Plast 42:168–193CrossRef
27.
go back to reference Klompen E, Engels T, Govaert LE, Meijer H (2005) Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997–7008CrossRef Klompen E, Engels T, Govaert LE, Meijer H (2005) Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997–7008CrossRef
28.
go back to reference Kontou E, Katsourinis S (2016) Application of a fractional model for simulation of the viscoelastic functions of polymers. J Appl Polym Sci 133:43505CrossRef Kontou E, Katsourinis S (2016) Application of a fractional model for simulation of the viscoelastic functions of polymers. J Appl Polym Sci 133:43505CrossRef
29.
go back to reference Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material model for polymers. Comput Mater Sci 50:2938–2949CrossRef Müller S, Kästner M, Brummund J, Ulbricht V (2011) A nonlinear fractional viscoelastic material model for polymers. Comput Mater Sci 50:2938–2949CrossRef
30.
go back to reference Xiao R, Sun HG, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Nonlinear Mech 93:7–14CrossRef Xiao R, Sun HG, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Nonlinear Mech 93:7–14CrossRef
31.
go back to reference Almeida R, Torres DF (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J 2013:915437 Almeida R, Torres DF (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J 2013:915437
32.
go back to reference Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356CrossRefMATH Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356CrossRefMATH
33.
go back to reference Duan Y, Saigal A, Greif R, Zimmerman MA (2001) A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym Eng Sci 41:1322–1328CrossRef Duan Y, Saigal A, Greif R, Zimmerman MA (2001) A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym Eng Sci 41:1322–1328CrossRef
34.
go back to reference Boyce MC, Arruda EM (1990) An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef Boyce MC, Arruda EM (1990) An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef
35.
go back to reference Yu P, Yao X, Han Q, Zang S, Gu Y (2014) A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures. Polymer 55:6577–6593CrossRef Yu P, Yao X, Han Q, Zang S, Gu Y (2014) A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures. Polymer 55:6577–6593CrossRef
36.
go back to reference Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938–7954CrossRefMATH Richeton J, Ahzi S, Vecchio KS, Jiang FC, Makradi A (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938–7954CrossRefMATH
Metadata
Title
Variable-order fractional description of compression deformation of amorphous glassy polymers
Authors
Ruifan Meng
Deshun Yin
Corina S. Drapaca
Publication date
02-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1663-9

Other articles of this Issue 1/2019

Computational Mechanics 1/2019 Go to the issue