Skip to main content
Top

2023 | OriginalPaper | Chapter

3. Varianzanalyse (ANOVA)

Authors : Klaus Backhaus, Bernd Erichson, Sonja Gensler, Rolf Weiber, Thomas Weiber

Published in: Multivariate Analysemethoden

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Die Varianzanalyse ist ein Verfahren, welches die Wirkung einer (oder mehrerer) unabhängiger Variablen auf eine (oder mehrere) abhängige Variablen untersucht. Für die unabhängigen Variablen, die auch als Faktoren oder Treatments bezeichnet werden, wird dabei lediglich eine nominale Skalierung verlangt, während die abhängige Variable (auch Zielvariable genannt) metrisch skaliert ist. Die Varianzanalyse ist das wichtigste multivariate Verfahren zur Aufdeckung von Mittelwertunterschieden über mehr als zwei Gruppen hinweg und dient damit insbesondere der Auswertung von Experimenten. Das Kapitel behandelt sowohl die einfaktorielle (eine abhängige und eine unabhängige Variable) als auch die zweifaktorielle (eine abhängige Variable und zwei unabhängige Variablen) Varianzanalyse und erweitert die Betrachtungen im Fallbeispiel auf die Analyse mit zwei unabhängigen Faktoren (nominal skaliert) und zwei (metrisch skalierten) Kovariaten. Darüber hinaus werden auch die Kontrastanalyse und der Post hoc-Test behandelt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Es wird in diesem Fall von der „Inferenzstatistik“ gesprochen, die von der deskriptiven Statistik zu unterscheiden ist. Die Inferenzstatistik macht Rückschlüsse und Vorhersagen über eine Population auf der Grundlage einer aus der untersuchten Grundgesamtheit gezogenen Stichprobe.
 
2
Im Anwendungsbeispiel wurden bewusst nur 5 Beobachtungen pro Gruppe und damit insgesamt 15 Beobachtungen gewählt, um die nachfolgenden Berechnungen leichter nachvollziehen zu können. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe empfohlen.
 
3
Auf der zu diesem Buch gehörigen Internetseite www.​multivariate.​de stellen wir ergänzendes Material zur Verfügung, um das Verstehen der Methode zu erleichtern und zu vertiefen.
 
4
Zur Auffrischung der Grundlagen zum statistischen Testen, bietet Abschn. 1.​3 eine kurze Zusammenfassung der grundlegenden Aspekte.
 
5
Vgl. zum Konzept der Freiheitsgrade die Ausführungen zu den statistischen Grundlagen in Abschn. 1.​2.​1.
 
6
Der Anwender kann auch andere Werte für α verwenden. Allerdings ist α = 5 % eine Art „Gold“-Standard in der Statistik, der auf R. A. Fisher (1890 – 1962) zurückgeht, der auch die F-Verteilung entwickelt hat. Allerdings muss der Anwender auch die Folgen (Kosten) einer Fehlentscheidung bei der Entscheidung berücksichtigen.
 
7
Zur Auffrischung der Grundlagen zum statistischen Testen, bietet Abschn. 1.​3 eine kurze Zusammenfassung der grundlegenden Aspekte.
 
8
Der p-Wert kann auch mit Hilfe von Excel durch Verwendung der Funktion  F.VERT.RE (Femp; df1;df2) berechnet werden. Für das Anwendungsbeispiel erhält man:  F.VERT.RE(38,09;2; 12) = 0,0000064 oder 0,00064 %. Eine detaillierte Erläuterung zum p-Wert findet der Leser auch in Abschn. 1.​3.​1.​2.
 
9
Hinweise zur Prüfung der Annahme multivariater Normalverteilung werden in Abschn. 3.5 gegeben. Eine detallierte Darstellung zur Prüfung von Varianzhomogenität mit dem Levene-Test findet der Leser in Abschn. 3.4.3.
 
10
Der Alpha-Fehler spiegelt die Wahrscheinlichkeit wider, die Nullhypothese abzulehnen, obwohl sie wahr ist. Vgl. zum Fehler erster und zweiter Art die Ausführungen zum statistischen Testen in Abschn. 1.​3.
 
11
SPSS bietet insgesamt 18 Varianten an Post-hoc-Tests an. Vgl. hierzu Abb. 3.16 in Abschn. 3.3.3.2.
 
12
Auch hier sei nochmals darauf hingewiesen, dass die Zahl von 5 Beobachtungen pro Gruppe und damit insgesamt 30 Beobachtungen bewusst gewählt wurde, um die nachfolgenden Berechnungen leichter nachvollziehen zu können. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe bei einer zweifaktoriellen ANOVA empfohlen.
 
13
Im Folgenden werden die drei allgemeinen Formen der Interaktion graphisch verdeutlicht. Die Interaktionseffekte im Anwendungsbeispiel entsprechen denen im Fallbeispiel und sind in Abb. 3.15 dargestellt und erläutert.
 
14
Im Fallbeispiel werden aus didaktischen Gründen nochmals die Daten des erweiterten Anwendungsbeispiels verwendet (vgl. Abschn. 3.2.2.1; Tab. 3.9). Deshalb ist auch hier darauf hinzuweisen, dass das Fallbeispiel nur auf insgesamt 30 Fällen basiert. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe empfohlen.
Tab. 3.14
Schokoladenabsatz in 15 Supermärkten nach Platzierung und Verpackung
  
Verpackung
Platzierung
 
Box
Papier
Süßwarenabteilung
SM 1
47
40
 
SM 2
39
39
 
SM 3
40
35
 
SM 4
46
36
 
SM 5
45
37
Sonderplatzierung
SM 6
68
59
 
SM 7
65
57
 
SM 8
63
54
 
SM 9
59
56
 
SM 10
67
53
Kassenplatzierung
SM 11
59
53
 
SM 12
50
47
 
SM 13
51
48
 
SM 14
48
50
 
SM 15
53
51
Auf der zu diesem Buch gehörigen Internetseite www.​multivariate.​de stellen wir ergänzendes Material zur Verfügung, um das Verstehen der Methode zu erleichtern und zu vertiefen.
 
15
Vgl. zu den Arten von Interaktionseffekten und der Berechnung des Interaktionseffektes im Fallbeispiel die Ausführungen in Abschn. 3.2.2.1.
 
16
Der p-Wert kann auch mit Hilfe von Excel durch Verwendung der Funktion  F.VERT.RE (Femp; df1; df2) berechnet werden. Für das Anwendungsbeispiel in Abschn. 3.2.1.1 erhält man: F.VERT.RE(0,062;2;12) = 0,9402. Eine detaillierte Erläuterung zum p - Wert findet der Leser auch in Abschn. 13.1.2.
 
Literature
go back to reference Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage. Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage.
go back to reference Brown, S. R., Collins, R. L., & Schmidt, G. W. (1990). Experimental design and analysis. Sage. Brown, S. R., Collins, R. L., & Schmidt, G. W. (1990). Experimental design and analysis. Sage.
go back to reference Christensen, R. (1996). Analysis of variance, design, and regression: Applied statistical methods. CRC Press. Christensen, R. (1996). Analysis of variance, design, and regression: Applied statistical methods. CRC Press.
go back to reference Haase, R. F., & Ellis, M. V. (1987). Multivariate analysis of variance. Journal of Counseling Psychology, 34(4), 404–413. Haase, R. F., & Ellis, M. V. (1987). Multivariate analysis of variance. Journal of Counseling Psychology, 34(4), 404–413.
go back to reference Kahn, J. (2011). Validation in marketing experiments revisited. Journal of Business Research, 64(7), 687–692. Kahn, J. (2011). Validation in marketing experiments revisited. Journal of Business Research, 64(7), 687–692.
go back to reference Leigh, J. H., & Kinnear, T. C. (1980). On interaction classification. Educational and Psychological Measurement, 40(4), 841–843. Leigh, J. H., & Kinnear, T. C. (1980). On interaction classification. Educational and Psychological Measurement, 40(4), 841–843.
go back to reference Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Hrsg.), Contributions to probability and statistics. Essays in honor of Harold Hotelling (S. 278–292). Stanford University Press. Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Hrsg.), Contributions to probability and statistics. Essays in honor of Harold Hotelling (S. 278–292). Stanford University Press.
go back to reference Levy, K. I. (1980). A Monte Carlo study of analysis of covariance under violations of the assumptions of normality and equal regression slopes. Educational and Psychological Measurement, 40(4), 835–840. Levy, K. I. (1980). A Monte Carlo study of analysis of covariance under violations of the assumptions of normality and equal regression slopes. Educational and Psychological Measurement, 40(4), 835–840.
go back to reference Moore, D. S. (2010). The basic practice of statistics (5. Aufl.). Freeman. Moore, D. S. (2010). The basic practice of statistics (5. Aufl.). Freeman.
go back to reference Perdue, B., & Summers, J. (1986). Checking the success of manipulations in marketing experiments. Journal of Marketing Research, 23(4), 317–326. Perdue, B., & Summers, J. (1986). Checking the success of manipulations in marketing experiments. Journal of Marketing Research, 23(4), 317–326.
go back to reference Perreault, W. D., & Darden, W. R. (1975). Unequal cell sizes in marketing experiments: Use of the general linear hypothesis. Journal of Marketing Research, 12(3), 333–342. Perreault, W. D., & Darden, W. R. (1975). Unequal cell sizes in marketing experiments: Use of the general linear hypothesis. Journal of Marketing Research, 12(3), 333–342.
go back to reference Pituch, K. A., & Stevens, J. P. (2016). Applied multivariate statistics for the social sciences (6. Aufl.). Routledge. Pituch, K. A., & Stevens, J. P. (2016). Applied multivariate statistics for the social sciences (6. Aufl.). Routledge.
go back to reference Shingala, M. C., & Rajyaguru, A. (2015). Comparison of post hoc tests for unequal variance. Journal of New Technologies in Science and Engineering, 2(5), 22–33. Shingala, M. C., & Rajyaguru, A. (2015). Comparison of post hoc tests for unequal variance. Journal of New Technologies in Science and Engineering, 2(5), 22–33.
go back to reference Smith, R. A. (1971). The effect of unequal group size on Tukey’s HSD procedure. Psychometrika, 36(1), 31–34. Smith, R. A. (1971). The effect of unequal group size on Tukey’s HSD procedure. Psychometrika, 36(1), 31–34.
go back to reference Warne, R. T. (2014). A primer on Multivariate analysis of variance (MANOVA) for behavioral scientists. Practical Assessment, Research & Evaluation, 19(17), 1–10. Warne, R. T. (2014). A primer on Multivariate analysis of variance (MANOVA) for behavioral scientists. Practical Assessment, Research & Evaluation, 19(17), 1–10.
go back to reference Eschweiler, M., Evanschitzsky, H., & Woisetschläger, D. (2007). Ein Leitfaden zur Anwendung varianzanalytisch ausgerichteter Laborexperimente. Wirtschaftswissenschaftliches Studium, 36(12), 546–554. Eschweiler, M., Evanschitzsky, H., & Woisetschläger, D. (2007). Ein Leitfaden zur Anwendung varianzanalytisch ausgerichteter Laborexperimente. Wirtschaftswissenschaftliches Studium, 36(12), 546–554.
go back to reference Gelman, A. (2005). Analysis of variance – Why it is more important than ever. The annals of statistics, 33(1), 1–53. Gelman, A. (2005). Analysis of variance – Why it is more important than ever. The annals of statistics, 33(1), 1–53.
go back to reference Ho, R. (2006). Handbook of univariate and multivariate data analysis and interpretation with SPSS. CRC Press. Ho, R. (2006). Handbook of univariate and multivariate data analysis and interpretation with SPSS. CRC Press.
go back to reference Huber, F., Meyer, F., & Lenzen, M. (2014). Grundlagen der Varianzanalyse. Springer Gabler. Huber, F., Meyer, F., & Lenzen, M. (2014). Grundlagen der Varianzanalyse. Springer Gabler.
go back to reference Sawyer, S. F. (2009). Analysis of variance: The fundamental concepts. Journal of Manual & Manipulative Therapy, 17(2), 27–38. Sawyer, S. F. (2009). Analysis of variance: The fundamental concepts. Journal of Manual & Manipulative Therapy, 17(2), 27–38.
go back to reference Scheffe, H. (1999). The analysis of variance. Wiley. Scheffe, H. (1999). The analysis of variance. Wiley.
go back to reference Turner, J. R., & Thayer, J. (2001). Introduction to analysis of variance: Design, analyis & interpretation. Sage. Turner, J. R., & Thayer, J. (2001). Introduction to analysis of variance: Design, analyis & interpretation. Sage.
Metadata
Title
Varianzanalyse (ANOVA)
Authors
Klaus Backhaus
Bernd Erichson
Sonja Gensler
Rolf Weiber
Thomas Weiber
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-658-40465-9_3