Skip to main content
Top
Published in: Advances in Manufacturing 3/2019

20-08-2019

Variation characteristic of drilling force and influence of cutting parameter of SiCp/Al composite thin-walled workpiece

Authors: Shu-Tao Huang, Chao Li, Li-Fu Xu, Lin Guo, Xiao-Lin Yu

Published in: Advances in Manufacturing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the variation characteristic of the drilling force, and the influences of cutting speed, feed rate, and workpiece thickness on the drilling force, were evaluated when drilling a silicon carbide particle reinforced aluminum matrix (SiCp/Al) composite thin-walled workpiece with a high volume fraction. Under the condition that the workpiece thickness was less than the drill tip height, three characteristic stages of drilling force variation were proposed. The results indicate that there is a significant difference between the variations in the drilling force when drilling a thin-walled workpiece compared to thick-walled workpiece. When the chisel edge drills out the lower surface of the workpiece, there is an abrupt decrease in the thrust forces of the thin-walled and thick-walled workpieces. In addition, there is an abrupt decrease in the torque of the thick-walled workpiece, whereas that of the thin-walled workpiece increases. According to the thickness of the thin-walled workpiece, the instant of the abrupt decrease in the thrust force may lead or lag behind the theoretical instant at which the chisel edge reaches the lower surface of the workpiece without deformation. When drilling a thin-walled hole, the cutting speed has a slight influence on the thrust force, and there is a slight increase in the torque in accordance with an increase in the cutting speed. The thrust force and torque increase in accordance with an increase in the feed rate. When drilling a thin-walled workpiece with a thickness of 1 mm, the critical thickness of workpiece cracking decreases in accordance with an increase in the cutting speed, and increases in accordance with an increase in the feed rate. When drilling a thin-walled workpiece with a thickness of 0.5 mm, the concave deformation of the workpiece and the critical thickness of the workpiece cracking increase in accordance with an increase in the feed rate. However, the increment in the critical thickness of the workpiece cracking is less than that in the concave deformation of the workpiece.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xiang JF, Xie LJ, Gao FN et al (2018) Diamond tools wear in drilling of SiCp/Al matrix composites containing copper. Ceram Int 44(5):5341–5351CrossRef Xiang JF, Xie LJ, Gao FN et al (2018) Diamond tools wear in drilling of SiCp/Al matrix composites containing copper. Ceram Int 44(5):5341–5351CrossRef
2.
go back to reference Huang S, Guo L, He H et al (2017) Study on characteristics of SiCp/Al composites during high-speed milling with different particle size of PCD tools. Int J Adv Manuf Technol 95(5–8):2269–2279 Huang S, Guo L, He H et al (2017) Study on characteristics of SiCp/Al composites during high-speed milling with different particle size of PCD tools. Int J Adv Manuf Technol 95(5–8):2269–2279
3.
go back to reference Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: microstructure. Compos Sci Technol 64(2):299–308CrossRef Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: microstructure. Compos Sci Technol 64(2):299–308CrossRef
4.
go back to reference Altunpak Y, Ay M, Aslan S (2012) Drilling of a hybrid Al/SiC/Gr metal matrix composites. Int J Adv Manuf Technol 60(5):513–517CrossRef Altunpak Y, Ay M, Aslan S (2012) Drilling of a hybrid Al/SiC/Gr metal matrix composites. Int J Adv Manuf Technol 60(5):513–517CrossRef
5.
go back to reference Huang ST, Guo L, He HH et al (2018) Experimental study on SiCp/Al composites with different volume fractions in high-speed milling with PCD tools. Int J Adv Manuf Technol 97:2731–2739CrossRef Huang ST, Guo L, He HH et al (2018) Experimental study on SiCp/Al composites with different volume fractions in high-speed milling with PCD tools. Int J Adv Manuf Technol 97:2731–2739CrossRef
6.
go back to reference Ekici E, Motorcu AR, Uzun G (2017) An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B 4 C composites. Measurement 95:395–404CrossRef Ekici E, Motorcu AR, Uzun G (2017) An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B 4 C composites. Measurement 95:395–404CrossRef
7.
go back to reference Paulo Davim J, Monteiro Baptista A (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. J Mater Process Technol 103(3):417–423CrossRef Paulo Davim J, Monteiro Baptista A (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. J Mater Process Technol 103(3):417–423CrossRef
8.
go back to reference Wang X, Guo J, Lin Y et al (2016) Study the effect of SiC content on the wear behavior and mechanism of as-extruded SiCp/Al-Cu-Mg-Zn alloy under simulating drilling operation. Surf Interface Anal 48(8):853–860CrossRef Wang X, Guo J, Lin Y et al (2016) Study the effect of SiC content on the wear behavior and mechanism of as-extruded SiCp/Al-Cu-Mg-Zn alloy under simulating drilling operation. Surf Interface Anal 48(8):853–860CrossRef
9.
go back to reference Chen X, Xie L, Nan X et al (2016) Experimental study on small-hole drilling characteristics of SiCp/Al composites. Procedia CIRP 46:319–322CrossRef Chen X, Xie L, Nan X et al (2016) Experimental study on small-hole drilling characteristics of SiCp/Al composites. Procedia CIRP 46:319–322CrossRef
10.
go back to reference Rajmohan T, Palanikumar K (2013) Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46(4):1470–1481CrossRef Rajmohan T, Palanikumar K (2013) Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46(4):1470–1481CrossRef
11.
go back to reference Zhou YX, Xia YM (2000) Experimental study of the rate-sensitivity of SiCp/Al composites and the establishment of a dynamic constitutive equation. Compos Sci Technol 60(3):403–410CrossRef Zhou YX, Xia YM (2000) Experimental study of the rate-sensitivity of SiCp/Al composites and the establishment of a dynamic constitutive equation. Compos Sci Technol 60(3):403–410CrossRef
12.
go back to reference Palanikumar K, Muniaraj A (2014) Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix (Al-15%SiC-4%graphite) composites. Measurement 53:240–250CrossRef Palanikumar K, Muniaraj A (2014) Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix (Al-15%SiC-4%graphite) composites. Measurement 53:240–250CrossRef
14.
go back to reference Kadivar MA, Akbari J, Yousefi R et al (2014) Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites. Robot Comput Integr Manuf 30(3):344–350CrossRef Kadivar MA, Akbari J, Yousefi R et al (2014) Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites. Robot Comput Integr Manuf 30(3):344–350CrossRef
15.
go back to reference Somasundaram G, Rajendra BS, Palanikumar K (2011) Modeling and analysis of roundness error in friction drilling of aluminum silicon carbide metal matrix composite. J Compos Mater 46(2):169–181CrossRef Somasundaram G, Rajendra BS, Palanikumar K (2011) Modeling and analysis of roundness error in friction drilling of aluminum silicon carbide metal matrix composite. J Compos Mater 46(2):169–181CrossRef
16.
go back to reference Tosun G (2010) Statistical analysis of process parameters in drilling of AlSi/Cp metal matrix composite. Int J Adv Manuf Technol 55(5–8):477–485 Tosun G (2010) Statistical analysis of process parameters in drilling of AlSi/Cp metal matrix composite. Int J Adv Manuf Technol 55(5–8):477–485
17.
go back to reference Seo YW, Kim D, Ramulu M (2006) Electrical discharge machining of functionally graded 15%–35% (volume fraction) SiCp/Al composites. Mater Manuf Process 21(5):479–487CrossRef Seo YW, Kim D, Ramulu M (2006) Electrical discharge machining of functionally graded 15%–35% (volume fraction) SiCp/Al composites. Mater Manuf Process 21(5):479–487CrossRef
18.
go back to reference Thakre AA, Soni S (2016) Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology. Eng Sci Technol Int J 19(3):1199–1205CrossRef Thakre AA, Soni S (2016) Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology. Eng Sci Technol Int J 19(3):1199–1205CrossRef
19.
go back to reference Basavarajappa S, Chandramohan G, Prabu M et al (2007) Drilling of hybrid metal matrix composites—workpiece surface integrity. Int J Mach Tools Manuf 47(1):92–96CrossRef Basavarajappa S, Chandramohan G, Prabu M et al (2007) Drilling of hybrid metal matrix composites—workpiece surface integrity. Int J Mach Tools Manuf 47(1):92–96CrossRef
20.
go back to reference Han JJ, Hao XQ, Li L et al (2017) Milling of high volume fraction SiCp/Al composites using PCD tools with different structures of tool edges and grain sizes. Int J Adv Manuf Technol 92:1875–1882CrossRef Han JJ, Hao XQ, Li L et al (2017) Milling of high volume fraction SiCp/Al composites using PCD tools with different structures of tool edges and grain sizes. Int J Adv Manuf Technol 92:1875–1882CrossRef
21.
go back to reference Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225–1234CrossRef Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225–1234CrossRef
22.
go back to reference Kremer A, Devillez A, Dominiak S et al (2008) Machinability of Al/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Mach Sci Technol 12(2):214–233CrossRef Kremer A, Devillez A, Dominiak S et al (2008) Machinability of Al/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Mach Sci Technol 12(2):214–233CrossRef
23.
go back to reference Narahari P, Pai BC, Pillai RM (1999) Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools. J Mater Eng Perform 8:538–542CrossRef Narahari P, Pai BC, Pillai RM (1999) Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools. J Mater Eng Perform 8:538–542CrossRef
24.
go back to reference Zhou L, Huang S, Xu L et al (2013) Drilling characteristics of SiCp/Al composites with electroplated diamond drills. Int J Adv Manuf Technol 69(5–8):1165–1173CrossRef Zhou L, Huang S, Xu L et al (2013) Drilling characteristics of SiCp/Al composites with electroplated diamond drills. Int J Adv Manuf Technol 69(5–8):1165–1173CrossRef
Metadata
Title
Variation characteristic of drilling force and influence of cutting parameter of SiCp/Al composite thin-walled workpiece
Authors
Shu-Tao Huang
Chao Li
Li-Fu Xu
Lin Guo
Xiao-Lin Yu
Publication date
20-08-2019
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 3/2019
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-019-00264-3

Other articles of this Issue 3/2019

Advances in Manufacturing 3/2019 Go to the issue

Premium Partners