Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-07-2019 | Issue 2/2020

Fire Technology 2/2020

Variation in Lightning Simulations to Assess Grounding Safety of Corrugated Stainless Steel Tubing (CSST)

Journal:
Fire Technology > Issue 2/2020
Authors:
Bryan Haslam, Thomas W. Eagar
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Codes and standards for lightning often rely on simulations due to the difficult nature of lightning testing, as in the case of corrugated stainless steel tubing (CSST). A small set of simulations by CSST manufacturers were previously used to justify the suggestion that grounding CSST would make it safe from perforation in the presence of lightning. Such a small set of simulations does not account for the uncertainty of lightning and the situations where it may interact with CSST. We account for these uncertainties in this work by performing thousands of simulations that use different combinations of simulation parameters. For example, for one scenario we run 2560 simulations with a variety of different waveforms and different impedance values. The waveforms follow IEC 62305 with rise times ranging from 0.25 \(\upmu\)s to 10 \(\upmu\)s and fall times ranging from 100 \(\upmu\)s to 1000 \(\upmu\)s and the impedance values were varied by ± \(25\%\). Our results show that there are cases where grounding may prevent perforation, cases where grounding may reduce the damage but not prevent perforation and cases where grounding increases the chances of perforation. Our results further show that for lightning strikes with peak current greater than the median, there was never a case where grounding could have prevented perforation. Our methods provide a way to perform more comprehensive simulations to replicate what may happen in nature and better inform decisions made about codes and standards. In particular we show grounding of CSST will not prevent fires when assaulted by lightning with any reasonable degree of certainty.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Fire Technology 2/2020 Go to the issue