Skip to main content
Top
Published in: Acta Mechanica 2/2020

25-11-2019 | Original Paper

Variational principles for nonlinear Kirchhoff rods

Authors: Ignacio Romero, Cristian G. Gebhardt

Published in: Acta Mechanica | Issue 2/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present article studies variational principles for the formulation of static and dynamic problems involving Kirchhoff rods in a fully nonlinear setting. These results, some of them new, others scattered in the literature, are presented in a self-contained fashion, helping to clarify certain aspects that have remained obscure. In particular, the study of transversely isotropic models reveals the delicate role that differential geometry plays in their formulation and unveils consequently some approximations that can be made to obtain simplified formulations.
Literature
1.
go back to reference Antman, S.S.: Kirchhoff’s problem for nonlinearly elastic rods. Q. Appl. Math. 32, 221–240 (1974)MathSciNetMATH Antman, S.S.: Kirchhoff’s problem for nonlinearly elastic rods. Q. Appl. Math. 32, 221–240 (1974)MathSciNetMATH
2.
go back to reference Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)MATH Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)MATH
3.
go back to reference Audoly, B., Clauvelin, N., Neukirch, S.: Elastic knots. Phys. Rev. Lett 99, 164301 (2007) Audoly, B., Clauvelin, N., Neukirch, S.: Elastic knots. Phys. Rev. Lett 99, 164301 (2007)
4.
go back to reference Benham, C.J.: An elastic model of the large-scale structure of duplex DNA. Biopolymers 18, 609–623 (1979) Benham, C.J.: An elastic model of the large-scale structure of duplex DNA. Biopolymers 18, 609–623 (1979)
5.
go back to reference Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27, 1–12 (2008) Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27, 1–12 (2008)
6.
go back to reference Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (TOG) 25, 1180–1187 (2006) Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (TOG) 25, 1180–1187 (2006)
7.
8.
go back to reference Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003) Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)
9.
go back to reference Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6, 041004–14 (2011) Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6, 041004–14 (2011)
10.
go back to reference Boyer, Y., Primault, D.: Finite element of slender beams in finite transformations: a geometrically exact approach. Int. J. Numer. Methods Eng. 55, 669–702 (2004)MathSciNetMATH Boyer, Y., Primault, D.: Finite element of slender beams in finite transformations: a geometrically exact approach. Int. J. Numer. Methods Eng. 55, 669–702 (2004)MathSciNetMATH
11.
go back to reference Cheng, Y.C., Feng, S.T., Hu, K.: Stability of anisotropic, naturally straight, helical elastic thin rods. Math. Mech. Solids 22, 2108–2119 (2017)MathSciNetMATH Cheng, Y.C., Feng, S.T., Hu, K.: Stability of anisotropic, naturally straight, helical elastic thin rods. Math. Mech. Solids 22, 2108–2119 (2017)MathSciNetMATH
12.
go back to reference Clebsch, A.: Theorie der Elastizität fester Körper. B.G. Teubner, Leipzig (1862) Clebsch, A.: Theorie der Elastizität fester Körper. B.G. Teubner, Leipzig (1862)
13.
go back to reference Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993)MathSciNetMATH Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993)MathSciNetMATH
14.
go back to reference Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris (1909)MATH Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris (1909)MATH
15.
go back to reference Coyne, J.: Analysis of the formation and elimination of loops in twisted cable. IEEE J. Ocean. Eng. 15, 72–83 (1990) Coyne, J.: Analysis of the formation and elimination of loops in twisted cable. IEEE J. Ocean. Eng. 15, 72–83 (1990)
16.
go back to reference Dichmann, D.J., Li, Y., Maddocks, J.H.: Hamiltonian formulations and symmetries in rod mechanics. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds.) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol. 82. Springer, New York, NY (1996) MATH Dichmann, D.J., Li, Y., Maddocks, J.H.: Hamiltonian formulations and symmetries in rod mechanics. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds.) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol. 82. Springer, New York, NY (1996) MATH
18.
19.
go back to reference Farouki, R.T.: Pythagorean-Hodograph Curves—Algebra and Geometry Inseparable. Springer, New York (2008)MATH Farouki, R.T.: Pythagorean-Hodograph Curves—Algebra and Geometry Inseparable. Springer, New York (2008)MATH
20.
go back to reference Farouki, R.T.: Rational rotation-minimizing frames-Recent advances and open problems. Appl. Math. Comput. 272, 80–91 (2016)MathSciNetMATH Farouki, R.T.: Rational rotation-minimizing frames-Recent advances and open problems. Appl. Math. Comput. 272, 80–91 (2016)MathSciNetMATH
21.
go back to reference Fukumoto, Y.: Analogy between a vortex–jet filament and the Kirchhoff elastic rod. Fluid Dyn. Res. 39, 511–520 (2007)MathSciNetMATH Fukumoto, Y.: Analogy between a vortex–jet filament and the Kirchhoff elastic rod. Fluid Dyn. Res. 39, 511–520 (2007)MathSciNetMATH
22.
go back to reference Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11, 3–45 (2001)MathSciNetMATH Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11, 3–45 (2001)MathSciNetMATH
23.
go back to reference Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetMATH Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetMATH
24.
go back to reference Greco, L., Cuomo, M.: An implicit G\(^{1}\) multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MathSciNetMATH Greco, L., Cuomo, M.: An implicit G\(^{1}\) multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MathSciNetMATH
25.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer, Berlin (2006)MATH
26.
go back to reference Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)MATH Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)MATH
27.
go back to reference Ivey, T.A., Singer, D.A.: Knot types, homotopies and stability of closed elastic rods. Proc. Lond. Math. Soc. 79, 429–450 (1999)MathSciNetMATH Ivey, T.A., Singer, D.A.: Knot types, homotopies and stability of closed elastic rods. Proc. Lond. Math. Soc. 79, 429–450 (1999)MathSciNetMATH
28.
go back to reference Kirchhoff, G.: Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–313 (1859)MathSciNet Kirchhoff, G.: Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–313 (1859)MathSciNet
29.
go back to reference Kmoch, P., Bonanni, U., Magnenat-Thalmann, N.: Hair simulation model for real-time environments. In: Computer Graphics International Conference, pp. 5–12. ACM, Victoria (2009) Kmoch, P., Bonanni, U., Magnenat-Thalmann, N.: Hair simulation model for real-time environments. In: Computer Graphics International Conference, pp. 5–12. ACM, Victoria (2009)
30.
go back to reference Langer, J., Singer, D.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996)MathSciNetMATH Langer, J., Singer, D.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996)MathSciNetMATH
31.
go back to reference Lefevre, B., Tayeb, F., du Peloux, L., Caron, J.F.: A 4-degree-of-freedom Kirchhoff beam model for the modeling of bending-torsion couplings in active-bending structures. Int. J. Space Struct. 32, 69–83 (2017) Lefevre, B., Tayeb, F., du Peloux, L., Caron, J.F.: A 4-degree-of-freedom Kirchhoff beam model for the modeling of bending-torsion couplings in active-bending structures. Int. J. Space Struct. 32, 69–83 (2017)
32.
go back to reference Liu, Y.Z., Zu, J.W.: Stability and bifurcation of helical equilibrium of a thin elastic rod. Acta Mech. 167, 29–39 (2004)MATH Liu, Y.Z., Zu, J.W.: Stability and bifurcation of helical equilibrium of a thin elastic rod. Acta Mech. 167, 29–39 (2004)MATH
33.
go back to reference Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)MATH Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)MATH
34.
go back to reference McMillen, T., Goriely, A.: Tendril perversion in intrinsically curved rods. J. Nonlinear Sci. 12, 241–281 (2002)MathSciNetMATH McMillen, T., Goriely, A.: Tendril perversion in intrinsically curved rods. J. Nonlinear Sci. 12, 241–281 (2002)MathSciNetMATH
35.
go back to reference Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)MathSciNetMATH Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)MathSciNetMATH
36.
go back to reference Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26, 163–243 (2017)MathSciNet Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26, 163–243 (2017)MathSciNet
37.
go back to reference Meier, C., Wall, W.A., Popp, A.: A unified approach for beam-to-beam contact. Comput. Methods Appl. Mech. Eng. 315, 972–1010 (2017)MathSciNet Meier, C., Wall, W.A., Popp, A.: A unified approach for beam-to-beam contact. Comput. Methods Appl. Mech. Eng. 315, 972–1010 (2017)MathSciNet
38.
go back to reference Mielke, A., Holmes, P.: Spatially complex equilibria of buckled rods. Arch. Ration. Mech. Anal. 101, 319–348 (1988)MathSciNetMATH Mielke, A., Holmes, P.: Spatially complex equilibria of buckled rods. Arch. Ration. Mech. Anal. 101, 319–348 (1988)MathSciNetMATH
39.
go back to reference Moore, A., Healey, T.: Computation of elastic equilibria of complete Möbius bands and their stability. Math. Mech. Solids 1–29 (in press) (2018) Moore, A., Healey, T.: Computation of elastic equilibria of complete Möbius bands and their stability. Math. Mech. Solids 1–29 (in press) (2018)
41.
go back to reference Pai, D.K.: STRANDS: interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21, 347–352 (2002) Pai, D.K.: STRANDS: interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21, 347–352 (2002)
42.
go back to reference Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)MathSciNetMATH Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)MathSciNetMATH
43.
go back to reference Romero, I.: Formulation and performance of variational integrators for rotating bodies. Comput. Mech. 42, 825–836 (2008)MathSciNetMATH Romero, I.: Formulation and performance of variational integrators for rotating bodies. Comput. Mech. 42, 825–836 (2008)MathSciNetMATH
44.
go back to reference Romero, I., Arnold, M.: Computing with rotations: algorithms and applications. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2017) Romero, I., Arnold, M.: Computing with rotations: algorithms and applications. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2017)
45.
go back to reference Romero, I., Urrecha, M., Cyron, C.J.: A torsion-free nonlinear beam model. Int. J. Non Linear Mech. 58, 1–10 (2014) Romero, I., Urrecha, M., Cyron, C.J.: A torsion-free nonlinear beam model. Int. J. Non Linear Mech. 58, 1–10 (2014)
46.
go back to reference Schlick, T.: Modeling superhelical DNA: recent analytical and dynamic approaches. Curr. Opin. Struct. Biol. 5, 245–262 (1995) Schlick, T.: Modeling superhelical DNA: recent analytical and dynamic approaches. Curr. Opin. Struct. Biol. 5, 245–262 (1995)
47.
go back to reference Shi, Y., Hearst, J.E.: The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5186–5200 (1994) Shi, Y., Hearst, J.E.: The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5186–5200 (1994)
48.
go back to reference Simo, J.C.: A finite strain beam formulation. Part I. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATH Simo, J.C.: A finite strain beam formulation. Part I. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)MATH
49.
go back to reference Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. I. Formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72, 267–304 (1989)MathSciNetMATH Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. I. Formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72, 267–304 (1989)MathSciNetMATH
50.
go back to reference Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)MathSciNetMATH Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)MathSciNetMATH
51.
go back to reference Singer, D.A.: Lectures on elastic curves and rods. AIP Conf. Proc. 1002, 3–32 (2008)MathSciNet Singer, D.A.: Lectures on elastic curves and rods. AIP Conf. Proc. 1002, 3–32 (2008)MathSciNet
52.
go back to reference Tucker, W.R., Wang, C.: An integrated model for drill-string dynamics. J. Sound Vib. 224, 123–165 (1999) Tucker, W.R., Wang, C.: An integrated model for drill-string dynamics. J. Sound Vib. 224, 123–165 (1999)
53.
go back to reference Valverde, J., Escalona, J.L., Domínguez, J., Champneys, A.R.: Stability and bifurcation analysis of a spinning space tether. J. Nonlinear Sci. 16, 507–542 (2006)MathSciNetMATH Valverde, J., Escalona, J.L., Domínguez, J., Champneys, A.R.: Stability and bifurcation analysis of a spinning space tether. J. Nonlinear Sci. 16, 507–542 (2006)MathSciNetMATH
54.
go back to reference Wang, Z., Fratarcangeli, M., Ruimi, A., Srinivasa, A.R.: Real time simulation of inextensible surgical thread using a Kirchhoff rod model with force output for haptic feedback applications. Int. J. Solids Struct. 113–114, 192–208 (2017) Wang, Z., Fratarcangeli, M., Ruimi, A., Srinivasa, A.R.: Real time simulation of inextensible surgical thread using a Kirchhoff rod model with force output for haptic feedback applications. Int. J. Solids Struct. 113–114, 192–208 (2017)
55.
go back to reference Weiss, H.: Dynamics of geometrically nonlinear rods: I. Nonlinear Dyn. 30, 357–381 (2002)MATH Weiss, H.: Dynamics of geometrically nonlinear rods: I. Nonlinear Dyn. 30, 357–381 (2002)MATH
56.
go back to reference Weiss, H.: Dynamics of geometrically nonlinear rods: II. Numerical methods and computational examples. Nonlinear Dyn. 30, 383–415 (2002)MathSciNetMATH Weiss, H.: Dynamics of geometrically nonlinear rods: II. Numerical methods and computational examples. Nonlinear Dyn. 30, 383–415 (2002)MathSciNetMATH
57.
go back to reference Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230, 243–264 (2019)MathSciNetMATH Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230, 243–264 (2019)MathSciNetMATH
Metadata
Title
Variational principles for nonlinear Kirchhoff rods
Authors
Ignacio Romero
Cristian G. Gebhardt
Publication date
25-11-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 2/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02562-0

Other articles of this Issue 2/2020

Acta Mechanica 2/2020 Go to the issue

Premium Partners