Skip to main content
Top
Published in: Acta Mechanica 12/2019

12-09-2019 | Original Paper

Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian

Authors: Teodor M. Atanacković, Sanja Konjik, Stevan Pilipović

Published in: Acta Mechanica | Issue 12/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We derive optimality conditions for variational problems of Herglotz type whose Lagrangian depends on fractional derivatives of both real and complex order, and resolve the case of subdomain when the lower bounds of variational integral and fractional derivatives differ. Moreover, we consider a problem of the Herglotz type that corresponds to the case when the Lagrangian depends on the fractional derivative of the action and give an example of the problem that corresponds to the oscillator with a memory. Since our assumptions on the Lagrangian are weaker than in the classical theory, we analyze generalized Euler–Lagrange equations by the use of weak derivatives and the appropriate technics of distribution theory. Such an example is discussed in detail.
Footnotes
1
We note that in the case when different boundary conditions on u are prescribed, the boundary conditions on \(\eta \) will be different. This case can be treated similarly.
 
Literature
1.
go back to reference Almeida, R., Malinowska, A.B.: Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B 19(8), 2367–2381 (2014)MathSciNetCrossRef Almeida, R., Malinowska, A.B.: Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B 19(8), 2367–2381 (2014)MathSciNetCrossRef
2.
go back to reference Atanacković, T.M., Janev, M., Pilipović, S., Zorica, D.: Euler–Lagrange equations for Lagrangians containing complex order fractional derivatives. J. Optim. Theory Appl. 174(1), 256–275 (2017)MathSciNetCrossRef Atanacković, T.M., Janev, M., Pilipović, S., Zorica, D.: Euler–Lagrange equations for Lagrangians containing complex order fractional derivatives. J. Optim. Theory Appl. 174(1), 256–275 (2017)MathSciNetCrossRef
3.
go back to reference Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41(9), 095201–095213 (2008)MathSciNetCrossRef Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41(9), 095201–095213 (2008)MathSciNetCrossRef
4.
go back to reference Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time Depend. Mater. 20(2), 175–195 (2016)CrossRef Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time Depend. Mater. 20(2), 175–195 (2016)CrossRef
5.
go back to reference Bourdin, L., Idczak, D.: A fractional fundamental lemma and a fractional integration by parts formula—applications to critical points of Bolza functionals and to linear boundary value problems. Adv. Differ. Equ. 20(3–4), 213–232 (2015)MathSciNetMATH Bourdin, L., Idczak, D.: A fractional fundamental lemma and a fractional integration by parts formula—applications to critical points of Bolza functionals and to linear boundary value problems. Adv. Differ. Equ. 20(3–4), 213–232 (2015)MathSciNetMATH
6.
go back to reference Cislo, J., Lopuszariski, J.T., Stichel, P.C.: On the inverse variational problem in classical mechanics. In: Rernbielinski, J. (ed.) Particles, Fields and Gravitation. AIP Conference Proceedings/High Energy Physics, vol. 453, pp. 219–225. American Institute of Physics (1998) Cislo, J., Lopuszariski, J.T., Stichel, P.C.: On the inverse variational problem in classical mechanics. In: Rernbielinski, J. (ed.) Particles, Fields and Gravitation. AIP Conference Proceedings/High Energy Physics, vol. 453, pp. 219–225. American Institute of Physics (1998)
7.
go back to reference Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Solitons Fractals 102, 94–98 (2017)MathSciNetCrossRef Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Solitons Fractals 102, 94–98 (2017)MathSciNetCrossRef
8.
go back to reference Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)CrossRef Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)CrossRef
9.
go back to reference Guenther, R.B., Guenther, C.M., Gottsch, J.A.: The Herglotz Lectures on Contact Transformations and Hamiltonian Systems. Lecture Notes in Nonlinear Analysis, vol. 1. Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń (1995) Guenther, R.B., Guenther, C.M., Gottsch, J.A.: The Herglotz Lectures on Contact Transformations and Hamiltonian Systems. Lecture Notes in Nonlinear Analysis, vol. 1. Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń (1995)
10.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
12.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)MATH
13.
go back to reference Tavares, D., Almeida, R., Torres, D.F.M.: Fractional Herglotz variational problems of variable order. Discrete Contin. Dyn. Syst. Ser. S 11, 143–154 (2018)MathSciNetMATH Tavares, D., Almeida, R., Torres, D.F.M.: Fractional Herglotz variational problems of variable order. Discrete Contin. Dyn. Syst. Ser. S 11, 143–154 (2018)MathSciNetMATH
14.
go back to reference Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229(9), 3601–3611 (2018)MathSciNetCrossRef Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229(9), 3601–3611 (2018)MathSciNetCrossRef
15.
go back to reference Vujanović, B.D., Atanacković, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)CrossRef Vujanović, B.D., Atanacković, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)CrossRef
16.
go back to reference Yang, X.-J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)CrossRef Yang, X.-J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)CrossRef
17.
go back to reference Zhang, Y.: Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech. 228(4), 1481–1492 (2017)MathSciNetCrossRef Zhang, Y.: Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech. 228(4), 1481–1492 (2017)MathSciNetCrossRef
Metadata
Title
Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian
Authors
Teodor M. Atanacković
Sanja Konjik
Stevan Pilipović
Publication date
12-09-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02521-9

Other articles of this Issue 12/2019

Acta Mechanica 12/2019 Go to the issue

Premium Partners