Skip to main content
Top

2019 | OriginalPaper | Chapter

10. Various Techniques to Functionalize Nanofibers

Authors : Sakthivel Nagarajan, Sebastien Balme, S. Narayana Kalkura, Philippe Miele, Celine Pochat Bohatier, Mikhael Bechelany

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface properties of a material control cell adhesion, adsorption, wettability, and colloidal stabilization. The surface functionalization of biomaterials or metals improves the biocompatibility and facilitates the cell attachment. It is established that the fabrication of superhydrophilic and superhydrophobic surface is feasible by surface functionalization. Surface-functionalized materials are found to be suitable to enhance cell material interaction. Hence, various surface functionalization methods carried out using procedures which involved covalent and noncovalent bonds are discussed. However, selection of a suitable functionalization and a reagent based upon the surface chemistry of the material is indispensable. This chapter mainly deals with the various surface functionalization techniques and describes the relevant approaches for activating the surface of the fibers. It provides the basic understanding about the selection of suitable reagent based on the available functional groups.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1(1):2–23CrossRef Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1(1):2–23CrossRef
2.
go back to reference Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987. 2017/08/15CrossRef Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987. 2017/08/15CrossRef
3.
go back to reference Aruna ST, Balaji LS, Kumar SS, Prakash BS (2017) Electrospinning in solid oxide fuel cells – a review. Renew Sust Energ Rev 67(Suppl C):673–682. 2017/01/01CrossRef Aruna ST, Balaji LS, Kumar SS, Prakash BS (2017) Electrospinning in solid oxide fuel cells – a review. Renew Sust Energ Rev 67(Suppl C):673–682. 2017/01/01CrossRef
4.
go back to reference Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH (2017) Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A 105(8):2119–2128CrossRef Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH (2017) Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A 105(8):2119–2128CrossRef
5.
go back to reference Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225CrossRef Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225CrossRef
6.
go back to reference Cheng J, Jun Y, Qin J, Lee S-H (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114(Suppl C):121–143. 2017/01/01CrossRef Cheng J, Jun Y, Qin J, Lee S-H (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114(Suppl C):121–143. 2017/01/01CrossRef
7.
go back to reference Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56(19):5724–5733. 2017/05/17CrossRef Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56(19):5724–5733. 2017/05/17CrossRef
8.
go back to reference Jana S, Zhang M (2013) Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B 1(20):2575–2581CrossRef Jana S, Zhang M (2013) Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B 1(20):2575–2581CrossRef
9.
go back to reference Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528CrossRef Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528CrossRef
10.
go back to reference Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem, pp 1–24 Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem, pp 1–24
11.
go back to reference Chen Y, Kim H (2009) Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride). Appl Surf Sci 255(15):7073–7077. 2009/05/15/CrossRef Chen Y, Kim H (2009) Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride). Appl Surf Sci 255(15):7073–7077. 2009/05/15/CrossRef
12.
go back to reference Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D et al (2015) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780CrossRef Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D et al (2015) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780CrossRef
13.
go back to reference Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645CrossRef Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645CrossRef
14.
go back to reference Taskin MB, Xu R, Zhao H, Wang X, Dong M, Besenbacher F et al (2015) Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Phys Chem Chem Phys 17(14):9446–9453CrossRef Taskin MB, Xu R, Zhao H, Wang X, Dong M, Besenbacher F et al (2015) Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Phys Chem Chem Phys 17(14):9446–9453CrossRef
15.
go back to reference da Costa FFP, Araujo ES, De Oliveira HP et al (2015) Electrospun fibers of enteric polymer for controlled drug delivery. In J Polym Sci 2015:8 da Costa FFP, Araujo ES, De Oliveira HP et al (2015) Electrospun fibers of enteric polymer for controlled drug delivery. In J Polym Sci 2015:8
16.
go back to reference Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042. 2009/10/05/CrossRef Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042. 2009/10/05/CrossRef
18.
go back to reference Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319. 2002/11/01CrossRef Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319. 2002/11/01CrossRef
19.
go back to reference Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473. 2004/03/01CrossRef Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473. 2004/03/01CrossRef
21.
go back to reference Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5):143–206. 2002/03/29CrossRef Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5):143–206. 2002/03/29CrossRef
22.
go back to reference Inagaki N (1996) Plasma surface modification and plasma polymerization. Taylor & Francis, Boca Raton Inagaki N (1996) Plasma surface modification and plasma polymerization. Taylor & Francis, Boca Raton
23.
go back to reference Lee S-D, Hsiue G-H, Chang PC-T, Kao C-Y (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17(16):1599–1608. 1996/01/01CrossRef Lee S-D, Hsiue G-H, Chang PC-T, Kao C-Y (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17(16):1599–1608. 1996/01/01CrossRef
24.
go back to reference Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3):863–871. 2002/02/01CrossRef Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3):863–871. 2002/02/01CrossRef
25.
go back to reference Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C et al (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8):1668–1674CrossRef Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C et al (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8):1668–1674CrossRef
26.
go back to reference Bao Y, Lai C, Zhu Z, Fong H, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3(23):8998–9004CrossRef Bao Y, Lai C, Zhu Z, Fong H, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3(23):8998–9004CrossRef
27.
go back to reference Liu W, Zhan J, Su Y, Wu T, Wu C, Ramakrishna S et al (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B: Biointerfaces 113(Suppl C):101–106. 2014/01/01CrossRef Liu W, Zhan J, Su Y, Wu T, Wu C, Ramakrishna S et al (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B: Biointerfaces 113(Suppl C):101–106. 2014/01/01CrossRef
28.
go back to reference Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Jamshidi Adegani F, Soleimani M (2013) Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res 354(3):849–860CrossRef Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Jamshidi Adegani F, Soleimani M (2013) Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res 354(3):849–860CrossRef
29.
go back to reference Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243. 2011/01/01CrossRef Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243. 2011/01/01CrossRef
30.
go back to reference He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36):7606–7615. 2005/12/01CrossRef He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36):7606–7615. 2005/12/01CrossRef
31.
go back to reference Sd V, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat M-L, Walpoth BH et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86. 2013/09/01CrossRef Sd V, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat M-L, Walpoth BH et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86. 2013/09/01CrossRef
32.
go back to reference Cheng Q, Komvopoulos K, Li S (2014) Plasma-assisted heparin conjugation on electrospun poly(l-lactide) fibrous scaffolds. J Biomed Mater Res A 102(5):1408–1414CrossRef Cheng Q, Komvopoulos K, Li S (2014) Plasma-assisted heparin conjugation on electrospun poly(l-lactide) fibrous scaffolds. J Biomed Mater Res A 102(5):1408–1414CrossRef
33.
go back to reference Baek HS, Park YH, Ki CS, Park J-C, Rah DK (2008) Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 202(22):5794–5797. 2008/08/30CrossRef Baek HS, Park YH, Ki CS, Park J-C, Rah DK (2008) Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 202(22):5794–5797. 2008/08/30CrossRef
34.
go back to reference Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19(5):1743–1748CrossRef Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19(5):1743–1748CrossRef
35.
go back to reference Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P et al (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213CrossRef Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P et al (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213CrossRef
36.
go back to reference Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG et al (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158CrossRef Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG et al (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158CrossRef
37.
go back to reference Jia J, Duan Y-Y, Yu J, Lu J-W (2008) Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. J Biomed Mater Res A 86A(2):364–373CrossRef Jia J, Duan Y-Y, Yu J, Lu J-W (2008) Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. J Biomed Mater Res A 86A(2):364–373CrossRef
38.
go back to reference Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206 Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206
39.
go back to reference Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JCM et al (2013) Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A 101A(4):963–972CrossRef Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JCM et al (2013) Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A 101A(4):963–972CrossRef
40.
go back to reference McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA (2003) Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. J Appl Polym Sci 88(8):2038–2047CrossRef McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA (2003) Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. J Appl Polym Sci 88(8):2038–2047CrossRef
41.
go back to reference Arjun GN, Menon G, Ramesh P (2014) Plasma surface modification of fibroporous polycarbonate urethane membrane by polydimethyl siloxane: structural characterization, mechanical properties, and in vitro cytocompatibility evaluation. J Biomed Mater Res A 102(4):947–957CrossRef Arjun GN, Menon G, Ramesh P (2014) Plasma surface modification of fibroporous polycarbonate urethane membrane by polydimethyl siloxane: structural characterization, mechanical properties, and in vitro cytocompatibility evaluation. J Biomed Mater Res A 102(4):947–957CrossRef
42.
go back to reference Uygun A, Kiristi M, Oksuz L, Manolache S, Ulusoy S (2011) RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications. Carbohydr Res 346(2):259–265. 2011/02/01CrossRef Uygun A, Kiristi M, Oksuz L, Manolache S, Ulusoy S (2011) RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications. Carbohydr Res 346(2):259–265. 2011/02/01CrossRef
43.
go back to reference Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868. 2007/02/01CrossRef Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868. 2007/02/01CrossRef
44.
go back to reference Sun H, Önneby S (2006) Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym Int 55(11):1336–1340CrossRef Sun H, Önneby S (2006) Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym Int 55(11):1336–1340CrossRef
45.
go back to reference Yuan X, Mak AFT, Yao K (2003) Surface degradation of poly(l-lactic acid) fibres in a concentrated alkaline solution. Polym Degrad Stab 79(1):45–52. 2003/01/01CrossRef Yuan X, Mak AFT, Yao K (2003) Surface degradation of poly(l-lactic acid) fibres in a concentrated alkaline solution. Polym Degrad Stab 79(1):45–52. 2003/01/01CrossRef
46.
go back to reference Wang Z-G, Wan L-S, Liu Z-M, Huang X-J, Xu Z-K (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. 2009/04/01/CrossRef Wang Z-G, Wan L-S, Liu Z-M, Huang X-J, Xu Z-K (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. 2009/04/01/CrossRef
47.
go back to reference Chen W-C, Chen C-H, Tseng H-W, Liu Y-W, Chen Y-P, Lee C-H et al (2017) Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. J Mater Chem B 5(3):553–564CrossRef Chen W-C, Chen C-H, Tseng H-W, Liu Y-W, Chen Y-P, Lee C-H et al (2017) Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. J Mater Chem B 5(3):553–564CrossRef
48.
go back to reference Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829. 2016/05/11CrossRef Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829. 2016/05/11CrossRef
49.
go back to reference Li L, Hsieh Y-L (2005) Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid). Polymer 46(14):5133–5139. 2005/06/27CrossRef Li L, Hsieh Y-L (2005) Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid). Polymer 46(14):5133–5139. 2005/06/27CrossRef
50.
go back to reference Baştürk E, Demir S, Danış Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127(1):349–355CrossRef Baştürk E, Demir S, Danış Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127(1):349–355CrossRef
51.
go back to reference Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromolecules 16(5):1590–1597. 2015/05/11CrossRef Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromolecules 16(5):1590–1597. 2015/05/11CrossRef
52.
go back to reference Zheng J, Liu K, Reneker DH, Becker ML (2012) Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition. J Am Chem Soc 134(41):17274–17277. 2012/10/17CrossRef Zheng J, Liu K, Reneker DH, Becker ML (2012) Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition. J Am Chem Soc 134(41):17274–17277. 2012/10/17CrossRef
53.
go back to reference Fu GD, Xu LQ, Yao F, Zhang K, Wang XF, Zhu MF et al (2009) Smart nanofibers from combined living radical polymerization, “click chemistry”, and electrospinning. ACS Appl Mater Interfaces 1(2):239–243. 2009/02/25CrossRef Fu GD, Xu LQ, Yao F, Zhang K, Wang XF, Zhu MF et al (2009) Smart nanofibers from combined living radical polymerization, “click chemistry”, and electrospinning. ACS Appl Mater Interfaces 1(2):239–243. 2009/02/25CrossRef
54.
go back to reference Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) Reactive and ‘clickable’ electrospun polymeric nanofibers. Polym Chem 6(18):3372–3381CrossRef Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) Reactive and ‘clickable’ electrospun polymeric nanofibers. Polym Chem 6(18):3372–3381CrossRef
55.
go back to reference Lin F, Yu J, Tang W, Zheng J, Xie S, Becker ML (2013) Postelectrospinning “click” modification of degradable amino acid-based poly(ester urea) nanofibers. Macromolecules 46(24):9515–9525. 2013/12/23CrossRef Lin F, Yu J, Tang W, Zheng J, Xie S, Becker ML (2013) Postelectrospinning “click” modification of degradable amino acid-based poly(ester urea) nanofibers. Macromolecules 46(24):9515–9525. 2013/12/23CrossRef
56.
go back to reference Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58(2):998–1003. 2010/01/27CrossRef Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58(2):998–1003. 2010/01/27CrossRef
57.
go back to reference Pritchard CD, Arnér KM, Neal RA, Neeley WL, Bojo P, Bachelder E et al (2010) The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8):2153–2162. 2010/03/01CrossRef Pritchard CD, Arnér KM, Neal RA, Neeley WL, Bojo P, Bachelder E et al (2010) The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8):2153–2162. 2010/03/01CrossRef
58.
go back to reference Wang Z-G, Ke B-B, Xu Z-K (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol Bioeng 97(4):708–720CrossRef Wang Z-G, Ke B-B, Xu Z-K (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol Bioeng 97(4):708–720CrossRef
59.
go back to reference Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7(4):1702–1709. 2011/04/01CrossRef Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7(4):1702–1709. 2011/04/01CrossRef
60.
go back to reference Mekhail M, Wong KKH, Padavan DT, Wu Y, O’Gorman DB, Wan W (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22(17):2241–2259. 2011/01/01CrossRef Mekhail M, Wong KKH, Padavan DT, Wu Y, O’Gorman DB, Wan W (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22(17):2241–2259. 2011/01/01CrossRef
61.
go back to reference Jae Suk Y, Yong Jin K, Soo Hwan K, Seung Hwa C (2011) Study on Genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg 44(3):197–207CrossRef Jae Suk Y, Yong Jin K, Soo Hwan K, Seung Hwa C (2011) Study on Genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg 44(3):197–207CrossRef
62.
go back to reference Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. 2009/01/28CrossRef Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. 2009/01/28CrossRef
63.
go back to reference Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17(2):221–246. 2001/02/04CrossRef Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17(2):221–246. 2001/02/04CrossRef
64.
go back to reference Gauche C, Vieira JTC, Ogliari PJ, Bordignon-Luiz MT (2008) Crosslinking of milk whey proteins by transglutaminase. Process Biochem 43(7):788–794. 2008/07/01CrossRef Gauche C, Vieira JTC, Ogliari PJ, Bordignon-Luiz MT (2008) Crosslinking of milk whey proteins by transglutaminase. Process Biochem 43(7):788–794. 2008/07/01CrossRef
65.
go back to reference Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565. 2008/10/01CrossRef Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565. 2008/10/01CrossRef
66.
go back to reference Liu T, Xu J, Chan BP, Chew SY (2012) Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A 100A(1):236–242CrossRef Liu T, Xu J, Chan BP, Chew SY (2012) Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A 100A(1):236–242CrossRef
67.
go back to reference Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36(2):191–217. 2011/02/01CrossRef Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36(2):191–217. 2011/02/01CrossRef
68.
go back to reference Roesler RR, Danielmeier K (2004) Tris-3-(1-aziridino)propionates and their use in formulated products. Prog Org Coat 50(1):1–27. 2004/06/01CrossRef Roesler RR, Danielmeier K (2004) Tris-3-(1-aziridino)propionates and their use in formulated products. Prog Org Coat 50(1):1–27. 2004/06/01CrossRef
69.
go back to reference Hermanson GT (2008) Functional targets, Chapter 1. In: Bioconjugate techniques, 2nd edn. Academic, New York, pp 1–168 Hermanson GT (2008) Functional targets, Chapter 1. In: Bioconjugate techniques, 2nd edn. Academic, New York, pp 1–168
70.
go back to reference Tomihata K, Ikada Y (1997) Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci A Polym Chem 35(16):3553–3559CrossRef Tomihata K, Ikada Y (1997) Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci A Polym Chem 35(16):3553–3559CrossRef
71.
go back to reference Zhu B-K, Wei X-Z, Xiao L, Xu Y-Y, Geckeler KE (2006) Preparation and properties of hyperbranched poly(amine-ester) films using acetal cross-linking units. Polym Int 55(1):63–70CrossRef Zhu B-K, Wei X-Z, Xiao L, Xu Y-Y, Geckeler KE (2006) Preparation and properties of hyperbranched poly(amine-ester) films using acetal cross-linking units. Polym Int 55(1):63–70CrossRef
72.
go back to reference Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5(101):83436–83447CrossRef Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5(101):83436–83447CrossRef
73.
go back to reference Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6(8):460–472CrossRef Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6(8):460–472CrossRef
74.
go back to reference Versace D-L, Ramier J, Grande D, Andaloussi SA, Dubot P, Hobeika N et al (2013) Versatile photochemical surface modification of biopolyester microfibrous scaffolds with photogenerated silver nanoparticles for antibacterial activity. Adv Healthc Mater 2(7):1008–1018CrossRef Versace D-L, Ramier J, Grande D, Andaloussi SA, Dubot P, Hobeika N et al (2013) Versatile photochemical surface modification of biopolyester microfibrous scaffolds with photogenerated silver nanoparticles for antibacterial activity. Adv Healthc Mater 2(7):1008–1018CrossRef
75.
go back to reference Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8(3):26–33. 2005/03/01CrossRef Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8(3):26–33. 2005/03/01CrossRef
76.
go back to reference Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113(Suppl C):200–207. 2014/11/26CrossRef Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113(Suppl C):200–207. 2014/11/26CrossRef
77.
go back to reference Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y et al (2010) Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J Mater Chem 20(39):8617–8623CrossRef Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y et al (2010) Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J Mater Chem 20(39):8617–8623CrossRef
78.
go back to reference Ameringer T, Ercole F, Tsang KM, Coad BR, Hou X, Rodda A et al (2013) Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases 8(1):16CrossRef Ameringer T, Ercole F, Tsang KM, Coad BR, Hou X, Rodda A et al (2013) Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases 8(1):16CrossRef
79.
go back to reference Rodda AE, Ercole F, Glattauer V, Nisbet DR, Healy KE, Dove AP et al (2016) Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. J Mater Chem B 4(45):7314–7322CrossRef Rodda AE, Ercole F, Glattauer V, Nisbet DR, Healy KE, Dove AP et al (2016) Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. J Mater Chem B 4(45):7314–7322CrossRef
80.
go back to reference Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23(12):2607–2614. 2002/06/01CrossRef Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23(12):2607–2614. 2002/06/01CrossRef
81.
go back to reference Wyrwa R, Finke B, Rebl H, Mischner N, Quaas M, Schaefer J et al (2011) Design of plasma surface-activated, electrospun polylactide non-wovens with improved cell acceptance. Adv Eng Mater 13(5):B165–BB71CrossRef Wyrwa R, Finke B, Rebl H, Mischner N, Quaas M, Schaefer J et al (2011) Design of plasma surface-activated, electrospun polylactide non-wovens with improved cell acceptance. Adv Eng Mater 13(5):B165–BB71CrossRef
82.
go back to reference Abrigo M, Kingshott P, McArthur SL (2015) Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10(4):04A301CrossRef Abrigo M, Kingshott P, McArthur SL (2015) Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10(4):04A301CrossRef
83.
go back to reference Y-m L, Li Q, H-h L, Cheng H-h YJ, Guo Z-x (2017) Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chin J Polym Sci 35(6):713–720CrossRef Y-m L, Li Q, H-h L, Cheng H-h YJ, Guo Z-x (2017) Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chin J Polym Sci 35(6):713–720CrossRef
84.
go back to reference Jassal M, Sengupta S, Bhowmick S (2015) Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed 26(18):1425–1438. 2015/12/12CrossRef Jassal M, Sengupta S, Bhowmick S (2015) Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed 26(18):1425–1438. 2015/12/12CrossRef
85.
go back to reference Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41(21):7291–7321CrossRef Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41(21):7291–7321CrossRef
86.
go back to reference Müller K, Quinn JF, Johnston APR, Becker M, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18(9):2397–2403. 2006/05/01CrossRef Müller K, Quinn JF, Johnston APR, Becker M, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18(9):2397–2403. 2006/05/01CrossRef
87.
go back to reference Chen L, Bromberg L, Lee JA, Zhang H, Schreuder-Gibson H, Gibson P et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22(4):1429–1436. 2010/02/23CrossRef Chen L, Bromberg L, Lee JA, Zhang H, Schreuder-Gibson H, Gibson P et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22(4):1429–1436. 2010/02/23CrossRef
88.
go back to reference Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24(4):492–502CrossRef Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24(4):492–502CrossRef
89.
go back to reference Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206. 2012/05/01CrossRef Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206. 2012/05/01CrossRef
91.
go back to reference Esfahani H, Prabhakaran MP, Salahi E, Tayebifard A, Keyanpour-Rad M, Rahimipour MR et al (2015) Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci 443(Suppl C):143–152. 2015/04/01CrossRef Esfahani H, Prabhakaran MP, Salahi E, Tayebifard A, Keyanpour-Rad M, Rahimipour MR et al (2015) Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci 443(Suppl C):143–152. 2015/04/01CrossRef
92.
go back to reference Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260(Suppl C):818–825. 2015/01/15CrossRef Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260(Suppl C):818–825. 2015/01/15CrossRef
93.
go back to reference Regis S, Youssefian S, Jassal M, Phaneuf MD, Rahbar N, Bhowmick S (2014) Fibronectin adsorption on functionalized electrospun polycaprolactone scaffolds: experimental and molecular dynamics studies. J Biomed Mater Res A 102(6):1697–1706CrossRef Regis S, Youssefian S, Jassal M, Phaneuf MD, Rahbar N, Bhowmick S (2014) Fibronectin adsorption on functionalized electrospun polycaprolactone scaffolds: experimental and molecular dynamics studies. J Biomed Mater Res A 102(6):1697–1706CrossRef
94.
go back to reference Porcar I, Cottet H, Gareil P, Tribet C (1999) Association between protein particles and long amphiphilic polymers: effect of the polymer hydrophobicity on binding isotherms. Macromolecules 32(12):3922–3929. 1999/06/01CrossRef Porcar I, Cottet H, Gareil P, Tribet C (1999) Association between protein particles and long amphiphilic polymers: effect of the polymer hydrophobicity on binding isotherms. Macromolecules 32(12):3922–3929. 1999/06/01CrossRef
Metadata
Title
Various Techniques to Functionalize Nanofibers
Authors
Sakthivel Nagarajan
Sebastien Balme
S. Narayana Kalkura
Philippe Miele
Celine Pochat Bohatier
Mikhael Bechelany
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_31

Premium Partners