Skip to main content
Top

2007 | OriginalPaper | Chapter

34. Velocity Dependence of Nanoscale Friction, Adhesion and Wear

Authors : Nikhil Tambe, Dr., Bharat Bhushan, Prof.

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advent of micro/nanostructures and the subsequent miniaturization of moving components for various nanotechnology applications, such as micro/nanoelectromechanical systems (MEMS/NEMS), have ascribed paramount importance to tribology and mechanics on the nanoscale. Most of these micro/nanodevices and components operate at very high sliding velocities (of the order of tens of mm/s to few m/s). Atomic force microscopy (AFM) studies into potential materials, coatings and lubricants for these devices have been rendered inadequate due to the inherent limitations on the highest sliding velocities achievable with commercial AFMs (<250  μm/s). The development of a new AFM-based technique has allowed nanotribological investigations to be performed over a wide range of velocities (up to 10 mm/s). Research conducted on various materials, coatings and lubricants reveals a strong velocity dependence of friction, adhesion and wear on the nanoscale. Based on the experimental evidence, theoretical formulations have been realized for nanoscale friction behavior in order to design a comprehensive analytical model that explains the velocity dependence. The model takes into consideration the contributions of adhesion at the tip–sample interface, high impact velocity related deformations at the contacting asperities, and atomic-scale stick-slip. Dominant friction mechanisms are identified and critical operating parameters for their transitions are defined. Wear studies are conducted at high sliding velocities to elucidate the primary failure mechanisms. A novel AFM-based nanowear mapping technique to map wear on the nanoscale is developed, and the interdependence of normal load and sliding velocity on sample surface wear is studied. This technique helps identify and classify wear mechanisms and determine the critical parameters responsible for their transitions. The interdependence of mechanical and tribological properties for various materials is explored and tribologically ideal materials with low adhesion and friction, suitable for nanotechnology applications, are identified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
34.1.
go back to reference Y. C. Tai, L. S. Fan, R. S. Muller: IC-processed micro-motors: Design, technology and testing, Proc. IEEE MEMS 20, 1–6 (1989) Y. C. Tai, L. S. Fan, R. S. Muller: IC-processed micro-motors: Design, technology and testing, Proc. IEEE MEMS 20, 1–6 (1989)
34.2.
go back to reference S. M. Spearing, K. S. Chen: Micro gas turbine engine materials and structures, Ceram. Eng. Sci. Proc. 18, 11–18 (1997)CrossRef S. M. Spearing, K. S. Chen: Micro gas turbine engine materials and structures, Ceram. Eng. Sci. Proc. 18, 11–18 (1997)CrossRef
34.4.
go back to reference H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigeen: Microactuators as driving units for microrobotic systems. In: Proc. Microrobotics: Components and Applications, Vol. 2906, ed. by A. Sulzmann (SPIE, Lausanne 1996) pp. 202–210 H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigeen: Microactuators as driving units for microrobotic systems. In: Proc. Microrobotics: Components and Applications, Vol. 2906, ed. by A. Sulzmann (SPIE, Lausanne 1996) pp. 202–210
34.5.
go back to reference R. P. Feynman: There's plenty of room at the bottom, Eng. Sci. 23, 22–36 (1960) R. P. Feynman: There's plenty of room at the bottom, Eng. Sci. 23, 22–36 (1960)
34.6.
go back to reference K. Komvopoulos: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques and adhesion theory, J. Adhes. Sci. Technol. 17, 477–517 (2003)CrossRef K. Komvopoulos: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques and adhesion theory, J. Adhes. Sci. Technol. 17, 477–517 (2003)CrossRef
34.7.
go back to reference R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromachined structures, J. Vacuum Sci. Technol. B 15, 1–20 (1997)CrossRef R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromachined structures, J. Vacuum Sci. Technol. B 15, 1–20 (1997)CrossRef
34.8.
go back to reference B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998) B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)
34.9.
go back to reference B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, J. Vacuum Sci. Technol. B 21, 2262–2296 (2003)CrossRef B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, J. Vacuum Sci. Technol. B 21, 2262–2296 (2003)CrossRef
34.10.
go back to reference B. Bhushan (eds.): Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2004) B. Bhushan (eds.): Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2004)
34.11.
go back to reference B. Bhushan: Micro/Nanotribology and its Applications, NATO ASI Series E: Applied Sciences, Vol. 330 (Kluwer, Dordrecht 1997) B. Bhushan: Micro/Nanotribology and its Applications, NATO ASI Series E: Applied Sciences, Vol. 330 (Kluwer, Dordrecht 1997)
34.12.
go back to reference B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999) B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)
34.13.
go back to reference B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999) B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)
34.14.
go back to reference B. Bhushan (ed): Modern Tribology Handbook, Vol 2: Materials, Coatings and Industrial Applications (CRC, Boca Raton 2001) B. Bhushan (ed): Modern Tribology Handbook, Vol 2: Materials, Coatings and Industrial Applications (CRC, Boca Raton 2001)
34.15.
go back to reference B. Bhushan: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, NATO Science Series II, Vol. 10 (Kluwer, Dordrecht 2001) B. Bhushan: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, NATO Science Series II, Vol. 10 (Kluwer, Dordrecht 2001)
34.16.
go back to reference L. G. Frechette, S. A. Jacobson, K. S. Breuer, F. F. Ehrich, R. Ghodssi, R. Khanna, C. W. Wong, X. Zhang, M. A. Schmidt, A. Epstein: High-speed microfabricated silicon tribomachinery and fluid film bearings, J. Microelectromech. Sys. 14, 141–152 (2005)CrossRef L. G. Frechette, S. A. Jacobson, K. S. Breuer, F. F. Ehrich, R. Ghodssi, R. Khanna, C. W. Wong, X. Zhang, M. A. Schmidt, A. Epstein: High-speed microfabricated silicon tribomachinery and fluid film bearings, J. Microelectromech. Sys. 14, 141–152 (2005)CrossRef
34.17.
go back to reference C. Muhlstein, S. Brown: Reliability and fatigue testing of MEMS. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 519–528 C. Muhlstein, S. Brown: Reliability and fatigue testing of MEMS. In: Tribology Issues and Opportunities in MEMS, ed. by B.  Bhushan (Kluwer, Dordrecht 1997) pp. 519–528
34.18.
go back to reference D. M. Tanner, N. F. Smith, L. W. Irwin: MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes (Sandia National Laboratories, Alberquerque 2000) pp. 2000–2091CrossRef D. M. Tanner, N. F. Smith, L. W. Irwin: MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes (Sandia National Laboratories, Alberquerque 2000) pp. 2000–2091CrossRef
34.19.
go back to reference N. S. Tambe, B. Bhushan: Scale dependence of micro/nanofriction and -adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)CrossRef N. S. Tambe, B. Bhushan: Scale dependence of micro/nanofriction and -adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)CrossRef
34.20.
go back to reference N. S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D 38, 764–773 (2005)CrossRef N. S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D 38, 764–773 (2005)CrossRef
34.21.
go back to reference N. S. Tambe, B. Bhushan: Friction model for velocity dependence of friction force, Nanotechnology 16, 2309–2324 (2005)CrossRef N. S. Tambe, B. Bhushan: Friction model for velocity dependence of friction force, Nanotechnology 16, 2309–2324 (2005)CrossRef
34.22.
go back to reference N. S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vacuum Sci. Technol. A 23, 830–835 (2005)CrossRef N. S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vacuum Sci. Technol. A 23, 830–835 (2005)CrossRef
34.23.
go back to reference N. S. Tambe, B. Bhushan: Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications, Ultramicroscopy 105, 238–247 (2005)CrossRef N. S. Tambe, B. Bhushan: Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications, Ultramicroscopy 105, 238–247 (2005)CrossRef
34.24.
go back to reference N. S. Tambe, B. Bhushan: Nanoscale friction induced phase transformation of diamondlike carbon, Scripta Mater. 52, 751–755 (2005)CrossRef N. S. Tambe, B. Bhushan: Nanoscale friction induced phase transformation of diamondlike carbon, Scripta Mater. 52, 751–755 (2005)CrossRef
34.25.
go back to reference N. S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906:1–3 (2005)CrossRef N. S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906:1–3 (2005)CrossRef
34.26.
go back to reference N. S. Tambe, B. Bhushan: Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)CrossRef N. S. Tambe, B. Bhushan: Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)CrossRef
34.27.
go back to reference N. S. Tambe, B. Bhushan: Nanowear mapping: A novel atomic force microscopy based approach for mapping nanoscale wear at high sliding velocities, Tribol. Lett. 20, 83–90 (2005)CrossRef N. S. Tambe, B. Bhushan: Nanowear mapping: A novel atomic force microscopy based approach for mapping nanoscale wear at high sliding velocities, Tribol. Lett. 20, 83–90 (2005)CrossRef
34.28.
go back to reference N. S. Tambe, B. Bhushan: Nanoscale friction mapping, Appl. Phys. Lett. 86, 193102 (2005)CrossRef N. S. Tambe, B. Bhushan: Nanoscale friction mapping, Appl. Phys. Lett. 86, 193102 (2005)CrossRef
34.29.
go back to reference H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of DMD by an AFM, J. Vacuum Sci. Technol. A 22, 1388–1396 (2004)CrossRef H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of DMD by an AFM, J. Vacuum Sci. Technol. A 22, 1388–1396 (2004)CrossRef
34.30.
go back to reference H. Liu, B. Bhushan: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)CrossRef H. Liu, B. Bhushan: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)CrossRef
34.31.
go back to reference G. Wei, B. Bhushan, S. J. Jacobs: Nanomechanical characterization of multilayered thin film structures for digital micromirror devices, Ultramicroscopy 100, 375–389 (2004)CrossRef G. Wei, B. Bhushan, S. J. Jacobs: Nanomechanical characterization of multilayered thin film structures for digital micromirror devices, Ultramicroscopy 100, 375–389 (2004)CrossRef
34.32.
go back to reference B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)CrossRef B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)CrossRef
34.33.
go back to reference H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vacuum Sci. Technol. A 24, 1528–1538 (2003)CrossRef H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vacuum Sci. Technol. A 24, 1528–1538 (2003)CrossRef
34.34.
go back to reference G. Amontons: De la resistance cause dans les Machines, Mem. Acad. Roy. A, 257–282 (1699) G. Amontons: De la resistance cause dans les Machines, Mem. Acad. Roy. A, 257–282 (1699)
34.35.
go back to reference C. A. Coulomb: Theorie des Machines Simples, en ayant regard au Frottement de leurs Parties, et a la Roideur des Cordages, Mem. Math. Phys. X, 161–342 (1785) X, Paris C. A. Coulomb: Theorie des Machines Simples, en ayant regard au Frottement de leurs Parties, et a la Roideur des Cordages, Mem. Math. Phys. X, 161–342 (1785) X, Paris
34.36.
go back to reference F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part I (Clarendon, Oxford 1950) F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part I (Clarendon, Oxford 1950)
34.37.
go back to reference F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part II (Clarendon, Oxford 1964) F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Part II (Clarendon, Oxford 1964)
34.38.
go back to reference D. F. Moore: The Friction and Lubrication of Elastomers, 1st edn. (Pergamon, New York 1972) D. F. Moore: The Friction and Lubrication of Elastomers, 1st edn. (Pergamon, New York 1972)
34.39.
go back to reference I. L. Singer, H. M. Pollock: Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO Series E: Applied Sciences (Kluwer, Boston 1992) p. 220 I. L. Singer, H. M. Pollock: Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO Series E: Applied Sciences (Kluwer, Boston 1992) p. 220
34.40.
go back to reference V. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)CrossRef V. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)CrossRef
34.41.
go back to reference B. Bhushan, A. V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996)CrossRef B. Bhushan, A. V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996)CrossRef
34.42.
go back to reference T. Bouhacina, J. P. Aime, S. Gauthier, D. Michel: Tribological behavior of a polymer grafter on silanized silica probed with a nanotip, Phys. Rev. B 56, 7694–7703 (1997)CrossRef T. Bouhacina, J. P. Aime, S. Gauthier, D. Michel: Tribological behavior of a polymer grafter on silanized silica probed with a nanotip, Phys. Rev. B 56, 7694–7703 (1997)CrossRef
34.43.
go back to reference T. Baumberger, P. Berthoud, C. Caroli: Physical analysis of the state- and rate-dependent friction law. II. Dynamic friction, Phys. Rev. B 60, 3928–3939 (1999)CrossRef T. Baumberger, P. Berthoud, C. Caroli: Physical analysis of the state- and rate-dependent friction law. II. Dynamic friction, Phys. Rev. B 60, 3928–3939 (1999)CrossRef
34.44.
go back to reference E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune: Interaction potential and hopping dynamics governing sliding friction, Phys. Rev. Lett. 91, 084502–1 (2003)CrossRef E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune: Interaction potential and hopping dynamics governing sliding friction, Phys. Rev. Lett. 91, 084502–1 (2003)CrossRef
34.45.
go back to reference H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (invited), Ultramicroscopy 91, 185–202 (2002)CrossRef H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (invited), Ultramicroscopy 91, 185–202 (2002)CrossRef
34.46.
go back to reference E. Gnecco, R. Bennewitz, O. Pfeiffer, A. Socoliuc, E. Meyer: Friction and Wear on the Atomic Scale. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2004) pp. 631–660CrossRef E. Gnecco, R. Bennewitz, O. Pfeiffer, A. Socoliuc, E. Meyer: Friction and Wear on the Atomic Scale. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2004) pp. 631–660CrossRef
34.47.
go back to reference K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)CrossRef K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)CrossRef
34.48.
go back to reference V. Scherer, B. Bhushan, W. Arnold: Lateral force microscopy using acoustic friction force microscopy, Surf. Interf. Anal. 27, 578–586 (1999)CrossRef V. Scherer, B. Bhushan, W. Arnold: Lateral force microscopy using acoustic friction force microscopy, Surf. Interf. Anal. 27, 578–586 (1999)CrossRef
34.49.
go back to reference O. Marti, H.-U. Krotil: Dynamic friction measurement with the scanning force microscope. In: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 121–135 O. Marti, H.-U. Krotil: Dynamic friction measurement with the scanning force microscope. In: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 121–135
34.50.
go back to reference M. Reinstadtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)CrossRef M. Reinstadtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)CrossRef
34.53.
go back to reference Digital Instruments, Inc.: Appendix D: Lithography. In: Nanoscope®command reference manual, Version 4.42 (Digital Instruments, Inc., Santa Barbara 1999) Digital Instruments, Inc.: Appendix D: Lithography. In: Nanoscope®command reference manual, Version 4.42 (Digital Instruments, Inc., Santa Barbara 1999)
34.54.
go back to reference S. D. Senturia: Microsystem Design (Kluwer, Boston 2001) S. D. Senturia: Microsystem Design (Kluwer, Boston 2001)
34.55.
go back to reference M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002) M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)
34.56.
go back to reference L. J. Hornbeck, W. E. Nelson: Bistable deformable mirror device. In: Spatial Light Modulators and Applications, OSA Technical Digest Series, Vol. 8 (Optical Society of America, Washington DC, Washington DC 1988) p. 107 L. J. Hornbeck, W. E. Nelson: Bistable deformable mirror device. In: Spatial Light Modulators and Applications, OSA Technical Digest Series, Vol. 8 (Optical Society of America, Washington DC, Washington DC 1988) p. 107
34.57.
go back to reference L. J. Hornbeck: The DMDTM projection display chip: A MEMS-based technology, MRS Bull. 26, 325–328 (2001)CrossRef L. J. Hornbeck: The DMDTM projection display chip: A MEMS-based technology, MRS Bull. 26, 325–328 (2001)CrossRef
34.58.
go back to reference M. Mehregany, C. A. Zorman: SiC MEMS: Opportunities and challenges for applications in harsh environments, Thin Solid Films 355-356, 518–524 (1999)CrossRef M. Mehregany, C. A. Zorman: SiC MEMS: Opportunities and challenges for applications in harsh environments, Thin Solid Films 355-356, 518–524 (1999)CrossRef
34.59.
go back to reference S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)CrossRef S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)CrossRef
34.60.
go back to reference A. Grill: Tribology of diamondlike carbon and related materials: an updated review, Surf. Coat. Technol. 94-95, 507–513 (1997)CrossRef A. Grill: Tribology of diamondlike carbon and related materials: an updated review, Surf. Coat. Technol. 94-95, 507–513 (1997)CrossRef
34.61.
go back to reference B. Bhushan: Chemical, mechanical and tribological characterization of ultrathin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments, Diamond Relat. Mater. 8, 1985–2015 (1999)CrossRef B. Bhushan: Chemical, mechanical and tribological characterization of ultrathin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments, Diamond Relat. Mater. 8, 1985–2015 (1999)CrossRef
34.62.
go back to reference S. R. Quake, A. Scherer: From micro- to nanofabrication with soft materials, Science 290, 1536–1540 (2000)CrossRef S. R. Quake, A. Scherer: From micro- to nanofabrication with soft materials, Science 290, 1536–1540 (2000)CrossRef
34.63.
go back to reference W. C. Tang, A. P. Lee: Defense applications of MEMS, MRS Bull. 26, 318–319 (2001)CrossRef W. C. Tang, A. P. Lee: Defense applications of MEMS, MRS Bull. 26, 318–319 (2001)CrossRef
34.64.
go back to reference J. C. McDonald, G. M. Whitesides: Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Acc. Chem. Res. 35, 491–499 (2000)CrossRef J. C. McDonald, G. M. Whitesides: Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Acc. Chem. Res. 35, 491–499 (2000)CrossRef
34.65.
go back to reference H. Becker, L. E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)CrossRef H. Becker, L. E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)CrossRef
34.66.
go back to reference A. Ulman: An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly (Academic, San Diego 1991) A. Ulman: An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly (Academic, San Diego 1991)
34.67.
go back to reference A. Ulman: Formation and structure of self-assembled monolayers, Chem. Rev. 96, 1533–1554 (1996)CrossRef A. Ulman: Formation and structure of self-assembled monolayers, Chem. Rev. 96, 1533–1554 (1996)CrossRef
34.68.
go back to reference L. J. Hornbeck: Low surface energy passivation layer for micromachined devices, US Patent No. 5,602,671, February 11, 1997 L. J. Hornbeck: Low surface energy passivation layer for micromachined devices, US Patent No. 5,602,671, February 11, 1997
34.69.
go back to reference R. M. Wallace, S. A. Henck, D. Webb: A PFPE coating for micro-mechanical devices, US Patent No. 5,512,374, April 30, 1996 R. M. Wallace, S. A. Henck, D. Webb: A PFPE coating for micro-mechanical devices, US Patent No. 5,512,374, April 30, 1996
34.70.
go back to reference S. A. Henck: Lubrication of digital micromirror devices®, Tribol. Lett. 3, 239–247 (1997)CrossRef S. A. Henck: Lubrication of digital micromirror devices®, Tribol. Lett. 3, 239–247 (1997)CrossRef
34.71.
go back to reference S. H. Lee, M. J. Kwon, J. G. Park, Y. K. Kim, H. J. Shin: Preparation characterization of perfluoro-organic thin films on aluminium, Surf. Coat. Technol. 112, 48–51 (1999)CrossRef S. H. Lee, M. J. Kwon, J. G. Park, Y. K. Kim, H. J. Shin: Preparation characterization of perfluoro-organic thin films on aluminium, Surf. Coat. Technol. 112, 48–51 (1999)CrossRef
34.72.
go back to reference K. K. Lee, N. G. Cha, J. S. Kim, J. G. Park, H. J. Shin: Chemical, optical and tribological characterization of perfluoropolymer films as an anti-stiction layer in micromirror arrays, Thin Solid Films 377-378, 727–732 (2000)CrossRef K. K. Lee, N. G. Cha, J. S. Kim, J. G. Park, H. J. Shin: Chemical, optical and tribological characterization of perfluoropolymer films as an anti-stiction layer in micromirror arrays, Thin Solid Films 377-378, 727–732 (2000)CrossRef
34.73.
go back to reference C. S. Gudeman: Vapor phase low molecular weight lubricants, US Patent No. 6,251,842, B1, June 26, 2001 C. S. Gudeman: Vapor phase low molecular weight lubricants, US Patent No. 6,251,842, B1, June 26, 2001
34.74.
go back to reference R. A. Robbins, S. J. Jacobs: Lubricant delivery for micro-mechanical devices, US Patent No. 6,300,294 B1, October 9, 2001 R. A. Robbins, S. J. Jacobs: Lubricant delivery for micro-mechanical devices, US Patent No. 6,300,294 B1, October 9, 2001
34.75.
go back to reference S. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 86, 4649–4656 (1999)CrossRef S. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 86, 4649–4656 (1999)CrossRef
34.76.
go back to reference E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Guntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRef E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Guntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRef
34.77.
go back to reference E. Riedo, F. Levy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505–1 (2002)CrossRef E. Riedo, F. Levy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505–1 (2002)CrossRef
34.79.
go back to reference K. Mizuhara, S. M. Hsu: Wear Particles, ed. by D. Dowson eds., C. M. Taylor, T. H. C. Childs, M. Godet, G. Dalmaz (Elsevier, Amsterdam 1992) pp. 323–328 K. Mizuhara, S. M. Hsu: Wear Particles, ed. by D. Dowson eds., C. M. Taylor, T. H. C. Childs, M. Godet, G. Dalmaz (Elsevier, Amsterdam 1992) pp. 323–328
34.80.
go back to reference S. C. Clear, P. F. Nealey: Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols, Langmuir 17, 720–732 (2001)CrossRef S. C. Clear, P. F. Nealey: Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols, Langmuir 17, 720–732 (2001)CrossRef
34.81.
go back to reference C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef
34.82.
go back to reference R. Bennewitz, E. Meyer, M. Bammerlin, T. Gyalog, E. Gnecco: Atomic-scale stick slip. In: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 53–66 R. Bennewitz, E. Meyer, M. Bammerlin, T. Gyalog, E. Gnecco: Atomic-scale stick slip. In: Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 53–66
34.83.
go back to reference J. N. Israelachvili, Y.-L. Chen, H. Yoshizawa: Relationship between adhesion and friction forces, J. Adhes. Sci. Technol. 8, 1231–1249 (1994)CrossRef J. N. Israelachvili, Y.-L. Chen, H. Yoshizawa: Relationship between adhesion and friction forces, J. Adhes. Sci. Technol. 8, 1231–1249 (1994)CrossRef
34.84.
go back to reference J. Ruan, B. Bhushan: Atomic scale friction measurements using friction force microscopy: Part I. General principles and new measurement technique, ASME J. Tribol. 116, 378–388 (1994)CrossRef J. Ruan, B. Bhushan: Atomic scale friction measurements using friction force microscopy: Part I. General principles and new measurement technique, ASME J. Tribol. 116, 378–388 (1994)CrossRef
34.85.
go back to reference F. P. Bowden, L. Leben: The nature of sliding and analysis of friction, Proc. R. Soc. Lond. A 169, 371–379 (1939)CrossRef F. P. Bowden, L. Leben: The nature of sliding and analysis of friction, Proc. R. Soc. Lond. A 169, 371–379 (1939)CrossRef
34.86.
go back to reference E. Rabinowicz: Friction and Wear of Materials, 2nd edn. (Wiley, New York 1995) E. Rabinowicz: Friction and Wear of Materials, 2nd edn. (Wiley, New York 1995)
34.87.
go back to reference G. A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7, 905–939 (1929) G. A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7, 905–939 (1929)
34.88.
go back to reference D. Tománek, W. Zhong, H. Thomas: Calculation of an atomically modulated friction force in atomic-force microscopy, Europhys. Lett. 15, 887–892 (1991)CrossRef D. Tománek, W. Zhong, H. Thomas: Calculation of an atomically modulated friction force in atomic-force microscopy, Europhys. Lett. 15, 887–892 (1991)CrossRef
34.89.
go back to reference L. Bouquet, E. Charlaix, S. Ciliberto, J. Crassous: Moisture-induced ageing in granular media and the kinetics of capillary condensation, Nature 396, 735–737 (1998)CrossRef L. Bouquet, E. Charlaix, S. Ciliberto, J. Crassous: Moisture-induced ageing in granular media and the kinetics of capillary condensation, Nature 396, 735–737 (1998)CrossRef
34.90.
go back to reference R. Evans: Liquids at Interfaces, ed. by J. Charvolin, J. F. Joanny, J. Zinn-Justin (Elsevier, New York 1989) pp. 3–98 R. Evans: Liquids at Interfaces, ed. by J. Charvolin, J. F. Joanny, J. Zinn-Justin (Elsevier, New York 1989) pp. 3–98
34.91.
go back to reference B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, Berlin, Heidelberg 1996) B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, Berlin, Heidelberg 1996)
34.92.
go back to reference J. I. Siepmann, I. R. McDonald: Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer, Phys. Rev. Lett. 70, 453–456 (1993)CrossRef J. I. Siepmann, I. R. McDonald: Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer, Phys. Rev. Lett. 70, 453–456 (1993)CrossRef
34.93.
go back to reference M. Garcia-Parajo, C. Longo, J. Servat, P. Gorostiza, F. Sanz: Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: contact and tapping modes, Langmuir 13, 2333–2339 (1997)CrossRef M. Garcia-Parajo, C. Longo, J. Servat, P. Gorostiza, F. Sanz: Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: contact and tapping modes, Langmuir 13, 2333–2339 (1997)CrossRef
34.94.
go back to reference D. Gourdon, N. A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud: The dependence of friction anisotropies on the molecular organization of LB films as observed by AFM, Tribol. Lett. 3, 317–324 (1997)CrossRef D. Gourdon, N. A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud: The dependence of friction anisotropies on the molecular organization of LB films as observed by AFM, Tribol. Lett. 3, 317–324 (1997)CrossRef
34.95.
go back to reference S. A. Joyce, R. C. Thomas, J. E. Houston, T. A. Michalske, R. M. Crooks: Mechanical relaxation of organic monolayer films measured by force microscopy, Phys. Rev. Lett. 68, 2790–2793 (1992)CrossRef S. A. Joyce, R. C. Thomas, J. E. Houston, T. A. Michalske, R. M. Crooks: Mechanical relaxation of organic monolayer films measured by force microscopy, Phys. Rev. Lett. 68, 2790–2793 (1992)CrossRef
34.96.
go back to reference D. Tabor: Proc. First Int. Skid Prevention Conf., Part 1, (1958) D. Tabor: Proc. First Int. Skid Prevention Conf., Part 1, (1958)
34.97.
go back to reference A. A. Voevodin, A. W. Phelps, J. S. Zabinski, M. S. Donley: Friction-induced phase transformation of pulsed laser deposited diamond-like carbon, Diamond Relat. Mat. 5, 1264–1269 (1996)CrossRef A. A. Voevodin, A. W. Phelps, J. S. Zabinski, M. S. Donley: Friction-induced phase transformation of pulsed laser deposited diamond-like carbon, Diamond Relat. Mat. 5, 1264–1269 (1996)CrossRef
34.98.
go back to reference C. L. Muhlstein, S. B. Brown, R. O. Ritchie: High-cycle fatigue of single crystal silicon thin films, J. Microelectromech. Syst. 10, 593–600 (2001)CrossRef C. L. Muhlstein, S. B. Brown, R. O. Ritchie: High-cycle fatigue of single crystal silicon thin films, J. Microelectromech. Syst. 10, 593–600 (2001)CrossRef
34.99.
go back to reference Image Metrology A/S: Scanning Probe Image Processor, Version 3.2.2.0. (Image Metrology A/S, Lyngby 2004) Image Metrology A/S: Scanning Probe Image Processor, Version 3.2.2.0. (Image Metrology A/S, Lyngby 2004)
34.100.
go back to reference S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its applications to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16, 437–445 (2001)CrossRef S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its applications to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16, 437–445 (2001)CrossRef
34.101.
go back to reference H. Liu, B. Bhushan: Orientation and relocation of biphenyl thiol self-assembled monolayers under sliding, Ultramicroscopy 91, 177–183 (2002)CrossRef H. Liu, B. Bhushan: Orientation and relocation of biphenyl thiol self-assembled monolayers under sliding, Ultramicroscopy 91, 177–183 (2002)CrossRef
34.102.
go back to reference B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412–1 (2001)CrossRef B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412–1 (2001)CrossRef
34.103.
go back to reference J. E. Field: The Properties of Natural and Synthetic Diamond (Academic, London 1992) J. E. Field: The Properties of Natural and Synthetic Diamond (Academic, London 1992)
34.104.
go back to reference Institution of Electrical Engineers: Properties of Silicon, EMIS Data Reviews Series No. 4, (INSPEC, London 1988) Institution of Electrical Engineers: Properties of Silicon, EMIS Data Reviews Series No. 4, (INSPEC, London 1988)
34.107.
go back to reference B. Bhushan, B. K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw-Hill, New York 1997) B. Bhushan, B. K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw-Hill, New York 1997)
34.108.
go back to reference G. Wei: The Young's modulus and hardness were obtained on NanoIndentor II (MTS Systems Corporation) using continuous stiffness measurement technique. The indentation depth was 200 nm with oscillation frequency of 45 Hz, oscillation amplitude of 1 nm (2004) G. Wei: The Young's modulus and hardness were obtained on NanoIndentor II (MTS Systems Corporation) using continuous stiffness measurement technique. The indentation depth was 200 nm with oscillation frequency of 45 Hz, oscillation amplitude of 1 nm (2004)
34.109.
go back to reference S. C. Lim, M. F. Ashby: Wear-mechanism maps, Acta Metall. 35, 1–24 (1987)CrossRef S. C. Lim, M. F. Ashby: Wear-mechanism maps, Acta Metall. 35, 1–24 (1987)CrossRef
34.110.
go back to reference S. C. Lim, M. F. Ashby, J. H. Brunton: Wear-rate transitions and their relationship to wear mechanisms, Acta Metall. 35, 1343–1348 (1987)CrossRef S. C. Lim, M. F. Ashby, J. H. Brunton: Wear-rate transitions and their relationship to wear mechanisms, Acta Metall. 35, 1343–1348 (1987)CrossRef
34.111.
go back to reference B. N. J. Persson: Sliding friction: Physical principles and applications, 2nd edn. (Springer, Berlin, Heidelberg 2000) B. N. J. Persson: Sliding friction: Physical principles and applications, 2nd edn. (Springer, Berlin, Heidelberg 2000)
Metadata
Title
Velocity Dependence of Nanoscale Friction, Adhesion and Wear
Authors
Nikhil Tambe, Dr.
Bharat Bhushan, Prof.
Copyright Year
2007
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_34

Premium Partners