Skip to main content
Top

2024 | OriginalPaper | Chapter

Ventilation Performance Index of Thermal Comfort for Stratum Ventilation: Extending Effective Draft Temperature to Cover Full Range of Air Velocity

Authors : Sheng Zhang, Dun Niu, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The conventional effective draft temperature (EDT) is commonly used to assess air distribution performance regarding thermal comfort. However, its applicability is limited to air velocities below 0.35 m/s. To accommodate higher air velocities of stratum ventilation for energy saving, this chapter proposes an extension EDT to cover the full range of air velocity. The transfer coefficient of air velocity to air temperature in the proposed extended EDT is determined based on the cooling effect of air movement, calculated using the standard effective temperature. The reference state, upper and lower boundaries of the proposed extended EDT are quantified based on thermal neutrality, the upper and lower boundaries of thermal comfort. Experimental investigations are conducted in a stratum-ventilated office to validate the proposed extended EDT, respectively. Results demonstrate that the conventional EDT achieves an average accuracy rate of 69.6%. The existing extended EDT outperforms the conventional EDT with an average accuracy rate of 71.7%. The proposed extended EDT exhibits significant improvement, surpassing the conventional EDT by 40.6% with an average accuracy rate of 97.8%. To facilitate practical applications, the proposed extended EDT is tabulated according to Categories I to III of thermal comfort under cooling and heating modes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma N, Aviv D, Guo H, Braham WW (2021) Measuring the right factors: a review of variables and models for thermal comfort and indoor air quality. Renew Sustain Energy Rev 135 Ma N, Aviv D, Guo H, Braham WW (2021) Measuring the right factors: a review of variables and models for thermal comfort and indoor air quality. Renew Sustain Energy Rev 135
2.
go back to reference Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef
3.
go back to reference Ren C, Xi C, Wang J, Feng Z, Nasiri F, Cao SJ et al (2021) Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers. Sustain Cities Soc 74 Ren C, Xi C, Wang J, Feng Z, Nasiri F, Cao SJ et al (2021) Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers. Sustain Cities Soc 74
4.
go back to reference Rydberg J, Norback P (1949) Air distribution and draft. ASHVE Trans 55 Rydberg J, Norback P (1949) Air distribution and draft. ASHVE Trans 55
5.
go back to reference Liu S, Novoselac A (2015) Air diffusion performance index (ADPI) of diffusers for heating mode. Build Environ 87:215–223CrossRef Liu S, Novoselac A (2015) Air diffusion performance index (ADPI) of diffusers for heating mode. Build Environ 87:215–223CrossRef
6.
go back to reference Wang X, Liu T, Lee WL (2021) Using revised ADPIs to identify an optimum positioning for installation of reversible room air-conditioners in bedroom for maximum thermal comfort. Build Environ 188 Wang X, Liu T, Lee WL (2021) Using revised ADPIs to identify an optimum positioning for installation of reversible room air-conditioners in bedroom for maximum thermal comfort. Build Environ 188
7.
go back to reference Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef
8.
go back to reference Amai H, Novoselac A (2016) Experimental study on air change effectiveness in mixing ventilation. Build Environ 109:101–111CrossRef Amai H, Novoselac A (2016) Experimental study on air change effectiveness in mixing ventilation. Build Environ 109:101–111CrossRef
9.
go back to reference Alajmi AF, Baddar FA, Bourisli RI (2015) Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system—a case study. Build Environ 85:153–159CrossRef Alajmi AF, Baddar FA, Bourisli RI (2015) Thermal comfort assessment of an office building served by under-floor air distribution (UFAD) system—a case study. Build Environ 85:153–159CrossRef
10.
go back to reference Ng KC, Kadirgama K, Ng EYK (2008) Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office. Energy Build 40(5):774–781CrossRef Ng KC, Kadirgama K, Ng EYK (2008) Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office. Energy Build 40(5):774–781CrossRef
11.
go back to reference Yin H, Huo Y, Wang Y, Ji D, Wang J, Ma Z et al (2021) Numerical investigation on mechanisms and performance of column attachment ventilation for winter heating. Build Environ 202 Yin H, Huo Y, Wang Y, Ji D, Wang J, Ma Z et al (2021) Numerical investigation on mechanisms and performance of column attachment ventilation for winter heating. Build Environ 202
12.
go back to reference Kong X, Xi C, Li H, Lin Z (2019) A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Build Environ 157:34–46CrossRef Kong X, Xi C, Li H, Lin Z (2019) A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Build Environ 157:34–46CrossRef
13.
go back to reference Rhee KN, Choi SH, Tsouvalas A (2021) Experimental investigation on the control performance of an active chilled beam system under dynamic cooling loads. Appl Therm Eng 194 Rhee KN, Choi SH, Tsouvalas A (2021) Experimental investigation on the control performance of an active chilled beam system under dynamic cooling loads. Appl Therm Eng 194
14.
go back to reference Xiang Y, Zhou G (2015) Thermal performance of a window-based cooling unit using phase change materials combined with night ventilation. Energy Build 108:267–278CrossRef Xiang Y, Zhou G (2015) Thermal performance of a window-based cooling unit using phase change materials combined with night ventilation. Energy Build 108:267–278CrossRef
15.
go back to reference Bojic M, Yik F, Lo TY (2002) Locating air-conditioners and furniture inside residential flats to obtain good thermal comfort. Energy Build 34(7):745–751CrossRef Bojic M, Yik F, Lo TY (2002) Locating air-conditioners and furniture inside residential flats to obtain good thermal comfort. Energy Build 34(7):745–751CrossRef
16.
go back to reference Rabani M, Madessa HB, Nord N, Schild P, Mysen M (2019) Performance assessment of all-air heating in an office cubicle equipped with an active supply diffuser in a cold climate. Build Environ 156:123–136CrossRef Rabani M, Madessa HB, Nord N, Schild P, Mysen M (2019) Performance assessment of all-air heating in an office cubicle equipped with an active supply diffuser in a cold climate. Build Environ 156:123–136CrossRef
17.
go back to reference Li Q, Yoshino H, Mochida A, Lei B, Meng Q, Zhao L et al (2009) CFD study of the thermal environment in an air-conditioned train station building. Build Environ 44(7):1452–1465CrossRef Li Q, Yoshino H, Mochida A, Lei B, Meng Q, Zhao L et al (2009) CFD study of the thermal environment in an air-conditioned train station building. Build Environ 44(7):1452–1465CrossRef
18.
go back to reference Chang Z, Yi K, Liu W (2021) A new ventilation mode of air conditioning in subway vehicles and its air distribution performance. Energy Built Environ 2(1):94–104CrossRef Chang Z, Yi K, Liu W (2021) A new ventilation mode of air conditioning in subway vehicles and its air distribution performance. Energy Built Environ 2(1):94–104CrossRef
19.
go back to reference Bellache O, Ouzzane M, Galanis N (2005) Numerical prediction of ventilation patterns and thermal processes in ice rinks. Build Environ 40(3):417–426CrossRef Bellache O, Ouzzane M, Galanis N (2005) Numerical prediction of ventilation patterns and thermal processes in ice rinks. Build Environ 40(3):417–426CrossRef
20.
go back to reference Method of Testing for Room Air Diffusion, ANSI/ASHRAE Standard 113 (2009) Method of Testing for Room Air Diffusion, ANSI/ASHRAE Standard 113 (2009)
21.
go back to reference Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef Zhang S, Cheng Y, Fang Z, Huan C, Lin Z (2017) Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving. Appl Energy 204:420–431CrossRef
22.
go back to reference Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications—a review. Appl Energy 115:164–173CrossRef Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications—a review. Appl Energy 115:164–173CrossRef
23.
go back to reference Yan H, Liu Q, Zhao W, Pang C, Dong M, Zhang H et al (2020) The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Build Environ 177 Yan H, Liu Q, Zhao W, Pang C, Dong M, Zhang H et al (2020) The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Build Environ 177
24.
go back to reference Omrani S, Matour S, Bamdad K, Izadyar N (2021) Ceiling fans as ventilation assisting devices in buildings: a critical review. Build Environ 201 Omrani S, Matour S, Bamdad K, Izadyar N (2021) Ceiling fans as ventilation assisting devices in buildings: a critical review. Build Environ 201
25.
go back to reference Lin Z, Lee CK, Fong S, Chow TT, Yao T, Chan ALS (2011) Comparison of annual energy performances with different ventilation methods for cooling. Energy Build 43(1):130–136CrossRef Lin Z, Lee CK, Fong S, Chow TT, Yao T, Chan ALS (2011) Comparison of annual energy performances with different ventilation methods for cooling. Energy Build 43(1):130–136CrossRef
26.
go back to reference ANSI/ASHRAE Standard 55 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA ANSI/ASHRAE Standard 55 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA
27.
go back to reference Lin Z (2011) Effective draft temperature for evaluating the performance of stratum ventilation. Build Environ 46(9):1843–1850CrossRef Lin Z (2011) Effective draft temperature for evaluating the performance of stratum ventilation. Build Environ 46(9):1843–1850CrossRef
28.
go back to reference Kong X, Chang Y, Li N, Li H, Li W (2021) Comparison study of thermal comfort and energy saving under eight different ventilation modes for space heating. Build Simul 15(7):1323–1337CrossRef Kong X, Chang Y, Li N, Li H, Li W (2021) Comparison study of thermal comfort and energy saving under eight different ventilation modes for space heating. Build Simul 15(7):1323–1337CrossRef
29.
go back to reference Maher D, Hana A, Arjmand JT, Issakhov A, Sammouda H, Sheremet M et al (2021) Effect of inlet/outlet on thermal performance of naturally ventilated building. Int J Low-Carbon Technol 16(4):1348–1362CrossRef Maher D, Hana A, Arjmand JT, Issakhov A, Sammouda H, Sheremet M et al (2021) Effect of inlet/outlet on thermal performance of naturally ventilated building. Int J Low-Carbon Technol 16(4):1348–1362CrossRef
30.
go back to reference Balocco C, Petrone G, Maggi O, Pasquariello G, Albertini R, Pasquarella C (2016) Indoor microclimatic study for Cultural Heritage protection and preventive conservation in the Palatina Library. J Cult Herit 22:956–967CrossRef Balocco C, Petrone G, Maggi O, Pasquariello G, Albertini R, Pasquarella C (2016) Indoor microclimatic study for Cultural Heritage protection and preventive conservation in the Palatina Library. J Cult Herit 22:956–967CrossRef
31.
go back to reference Zhang S, Lin Z (2020) Predicted Mean Vote with skin temperature from standard effective temperature model. Build Environ 183 Zhang S, Lin Z (2020) Predicted Mean Vote with skin temperature from standard effective temperature model. Build Environ 183
32.
go back to reference Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef
33.
go back to reference European Standard EN ISO 7730 (2005) Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria European Standard EN ISO 7730 (2005) Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
34.
go back to reference Cheng F, Wu Y, Gao S, Liao C, Cheng Y (2022) Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter. Build Environ 207 Cheng F, Wu Y, Gao S, Liao C, Cheng Y (2022) Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter. Build Environ 207
35.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2019) Systematic comparisons of exit air temperature and wall temperature for modelling non-uniform thermal environment of stratum ventilation. Build Environ 149:120–133CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2019) Systematic comparisons of exit air temperature and wall temperature for modelling non-uniform thermal environment of stratum ventilation. Build Environ 149:120–133CrossRef
Metadata
Title
Ventilation Performance Index of Thermal Comfort for Stratum Ventilation: Extending Effective Draft Temperature to Cover Full Range of Air Velocity
Authors
Sheng Zhang
Dun Niu
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_8