Skip to main content
Top
Published in: Journal of Nanoparticle Research 8/2012

01-08-2012 | Research Paper

Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity

Authors: Dongmao Zhang, Sheldon Q. Shi, Charles U. Pittman Jr., Dongping Jiang, Wen Che, Zheng Gai, Jane Y. Howe, Karren L. More, Arockiasamy Antonyraj

Published in: Journal of Nanoparticle Research | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron-based nanoparticles supported on carbon (FeNPs@C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP@C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe3O4 nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP@C synthesized at a pyrolysis temperature of 500 °C (FeNP@C-500) reacts violently (pyrophoric) when exposed to air, while FeNP@C prepared at 800 °C (FeNP@C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP@C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5–15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs@C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Amara D, Grinblat J, Margel S (2010) Synthesis of magnetic iron and iron oxide micrometre-sized composite particles of narrow size distribution by annealing iron salts entrapped within uniform porous poly(divinylbenzene) microspheres. J Mater Chem 20(10):1899–1906CrossRef Amara D, Grinblat J, Margel S (2010) Synthesis of magnetic iron and iron oxide micrometre-sized composite particles of narrow size distribution by annealing iron salts entrapped within uniform porous poly(divinylbenzene) microspheres. J Mater Chem 20(10):1899–1906CrossRef
go back to reference Annadurai G, Juang R-S, Lee D-J (2001) Adsorption of rhodamine 6G from aqueous solutions on activated carbon. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(5):715–725CrossRef Annadurai G, Juang R-S, Lee D-J (2001) Adsorption of rhodamine 6G from aqueous solutions on activated carbon. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(5):715–725CrossRef
go back to reference Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562CrossRef Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562CrossRef
go back to reference Han YC, Cha HG, Kim CW, Kim YH, Kang YS (2007) Synthesis of highly magnetized iron nanoparticles by a solventless thermal decomposition method. J Phys Chem C 111(17):6275–6280CrossRef Han YC, Cha HG, Kim CW, Kim YH, Kang YS (2007) Synthesis of highly magnetized iron nanoparticles by a solventless thermal decomposition method. J Phys Chem C 111(17):6275–6280CrossRef
go back to reference Harris PJF (2001) Non-graphitizing carbons. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6197–6202CrossRef Harris PJF (2001) Non-graphitizing carbons. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6197–6202CrossRef
go back to reference He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRef He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRef
go back to reference Jeanne EP et al (2008) Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology 19(45):455612CrossRef Jeanne EP et al (2008) Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology 19(45):455612CrossRef
go back to reference Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298CrossRef Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298CrossRef
go back to reference Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) removal from Groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRef Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) removal from Groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRef
go back to reference Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101(7):2562–2564CrossRef Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresour Technol 101(7):2562–2564CrossRef
go back to reference Liu Y, Ren Z, Wei Y, Jiang B, Feng S, Zhang L, Zhang W, Fu H (2010) Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J Mater Chem 20(23):4802–4808CrossRef Liu Y, Ren Z, Wei Y, Jiang B, Feng S, Zhang L, Zhang W, Fu H (2010) Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J Mater Chem 20(23):4802–4808CrossRef
go back to reference Lo CK, Xiao D, Choi MMF (2007) Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J Mater Chem 17(23):2418–2427CrossRef Lo CK, Xiao D, Choi MMF (2007) Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J Mater Chem 17(23):2418–2427CrossRef
go back to reference Magalhães F, Pereira M, Fabris J, Costa Bottrel S, Amaya A, Mogliazza N, Lago R (2010) Hematite reaction with tar to produce carbon/iron composites for the reduction of Cr(VI) contaminant. Hyperfine Interact 195(1):43–48CrossRef Magalhães F, Pereira M, Fabris J, Costa Bottrel S, Amaya A, Mogliazza N, Lago R (2010) Hematite reaction with tar to produce carbon/iron composites for the reduction of Cr(VI) contaminant. Hyperfine Interact 195(1):43–48CrossRef
go back to reference Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36(24):5455–5461CrossRef Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36(24):5455–5461CrossRef
go back to reference Marsh H, Crawford D, Taylor DW (1983) Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725–1090 K. A high resolution electron microscope study. Carbon 21(1):81–87CrossRef Marsh H, Crawford D, Taylor DW (1983) Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725–1090 K. A high resolution electron microscope study. Carbon 21(1):81–87CrossRef
go back to reference Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2004) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRef Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2004) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230CrossRef
go back to reference Oliveira LCA, Fabris JD, Rios RRVA, Mussel WN, Lago RM (2004) Fe3-xMnxO4 catalysts: phase transformations and carbon monoxide oxidation. Appl Catal A 259(2):253–259CrossRef Oliveira LCA, Fabris JD, Rios RRVA, Mussel WN, Lago RM (2004) Fe3-xMnxO4 catalysts: phase transformations and carbon monoxide oxidation. Appl Catal A 259(2):253–259CrossRef
go back to reference Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290CrossRef Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290CrossRef
go back to reference Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ Sci Technol 44(12):4531–4538CrossRef Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ Sci Technol 44(12):4531–4538CrossRef
go back to reference Phillips DH, Nooten TV, Bastiaens L, Russell MI, Dickson K, Plant S, Ahad JME, Newton T, Elliot T, Kalin RM (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44(10):3861–3869CrossRef Phillips DH, Nooten TV, Bastiaens L, Russell MI, Dickson K, Plant S, Ahad JME, Newton T, Elliot T, Kalin RM (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44(10):3861–3869CrossRef
go back to reference Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075CrossRef Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075CrossRef
go back to reference Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRef
go back to reference Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRef Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRef
go back to reference Schwickardi M, Olejnik S, Salabas E-L, Schmidt W, Schuth F (2006) Scalable synthesis of activated carbon with superparamagnetic properties. Chem Commun (38):3987–3989 Schwickardi M, Olejnik S, Salabas E-L, Schmidt W, Schuth F (2006) Scalable synthesis of activated carbon with superparamagnetic properties. Chem Commun (38):3987–3989
go back to reference Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490(1–3):63–68CrossRef Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490(1–3):63–68CrossRef
go back to reference Singh R, Misra V, Singh R (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13(9):4063–4073CrossRef Singh R, Misra V, Singh R (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13(9):4063–4073CrossRef
go back to reference Tiehm A, Kraßnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16(5):617–621CrossRef Tiehm A, Kraßnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16(5):617–621CrossRef
go back to reference Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRef Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRef
go back to reference Xu J, Gao N, Tang Y, Deng Y, Sui M (2010) Perchlorate removal using granular activated carbon supported iron compounds: synthesis, characterization and reactivity. J Environ Sci 22(11):1807–1813CrossRef Xu J, Gao N, Tang Y, Deng Y, Sui M (2010) Perchlorate removal using granular activated carbon supported iron compounds: synthesis, characterization and reactivity. J Environ Sci 22(11):1807–1813CrossRef
go back to reference Yu S, Chow GM (2005) Synthesis, structural, magnetic, and cytotoxic properties of iron oxide coated iron/iron-carbide nanocomposite particles. J Appl Phys 98(11):114306CrossRef Yu S, Chow GM (2005) Synthesis, structural, magnetic, and cytotoxic properties of iron oxide coated iron/iron-carbide nanocomposite particles. J Appl Phys 98(11):114306CrossRef
go back to reference Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRef Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRef
go back to reference Zhang Z, Blom DA, Gai Z, Thompson JR, Shen J, Dai S (2003) High-yield solvothermal formation of magnetic CoPt alloy nanowires. J Am Chem Soc 125(25):7528–7529CrossRef Zhang Z, Blom DA, Gai Z, Thompson JR, Shen J, Dai S (2003) High-yield solvothermal formation of magnetic CoPt alloy nanowires. J Am Chem Soc 125(25):7528–7529CrossRef
go back to reference Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596CrossRef Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596CrossRef
Metadata
Title
Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity
Authors
Dongmao Zhang
Sheldon Q. Shi
Charles U. Pittman Jr.
Dongping Jiang
Wen Che
Zheng Gai
Jane Y. Howe
Karren L. More
Arockiasamy Antonyraj
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 8/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1023-1

Other articles of this Issue 8/2012

Journal of Nanoparticle Research 8/2012 Go to the issue

Premium Partners