Skip to main content
Top

2023 | OriginalPaper | Chapter

Vertical Approach Anomaly Detection Using Local Outlier Factor

Authors : Nils Jakob Johannesen, Mohan Lal Kolhe, Morten Goodwin

Published in: Power Systems Cybersecurity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Detection of anomalies based on smart meter data is crucial to identify potential risks and unusual events at an early stage. In addition anomaly detection can be used as a tool to detect unwanted outliers, caused by operational failures and technical faults, for the pre-processing of data for machine learning, to detect concept drift as well as enhancing cyber-security in smart electrical grid operations. It is known that anomalies are defined through their contextual appearance. Hence, anomalies are divided into point, conceptual and contextual anomalies. In this work the contextual anomaly detection is examined, through a novel type of load forecasting known as vertical approach. This chapter explores the use of anomaly detection in the relevant learning systems for machine learning in smart electrical grid operation and management through data from New South Wales region in Australia. The presented vertical time approach uses seasonal data for training and inference, as opposed to continuous time approach that utilizes all data in a continuum from the start of the dataset until the time used for inference. It is observed that Local Outlier Factor identifies different local outliers given different vertical approaches. In addition, the local outlier factor score vary vertically. An anomaly is defined as a deviation from an established normal pattern. Spotting an anomaly depends on the ability to defy what is normal. Anomaly detection systems aim at finding these anomalies. Anomaly detection systems are in high demand, despite the fact that there is no clear validation approach. These systems rely on deep domain expertise.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference K. Huang, C. Zhou, Y.-C. Tian, S. Yang, Y. Qin, Assessing the physical impact of cyberattacks on industrial cyber-physical systems. IEEE Trans. Industr. Electron. 65(10), 8153–8162 (2018)CrossRef K. Huang, C. Zhou, Y.-C. Tian, S. Yang, Y. Qin, Assessing the physical impact of cyberattacks on industrial cyber-physical systems. IEEE Trans. Industr. Electron. 65(10), 8153–8162 (2018)CrossRef
3.
go back to reference F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Industr. Electron. 53(5), 1398–1409 (2006)CrossRef F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Industr. Electron. 53(5), 1398–1409 (2006)CrossRef
4.
go back to reference S. Sahoo, T. Dragičević, F. Blaabjerg, Cyber security in control of grid-tied power electronic converters-challenges and vulnerabilities. IEEE J. Emerg. Select. Top. Power Electron. 1 (2019) S. Sahoo, T. Dragičević, F. Blaabjerg, Cyber security in control of grid-tied power electronic converters-challenges and vulnerabilities. IEEE J. Emerg. Select. Top. Power Electron. 1 (2019)
6.
go back to reference N.J. Johannesen, M. Kolhe, M. Goodwin, Deregulated electric energy price forecasting in nordpool market using regression techniques, in 2019 IEEE Sustainable Power and Energy Conference (iSPEC) (2019), pp. 1932–1938 N.J. Johannesen, M. Kolhe, M. Goodwin, Deregulated electric energy price forecasting in nordpool market using regression techniques, in 2019 IEEE Sustainable Power and Energy Conference (iSPEC) (2019), pp. 1932–1938
7.
go back to reference N.J. Johannesen, M. Kolhe, M. Goodwin, Comparison of regression tools for regional electric load forecasting, in 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, 2018), pp. 1–6 N.J. Johannesen, M. Kolhe, M. Goodwin, Comparison of regression tools for regional electric load forecasting, in 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, 2018), pp. 1–6
8.
go back to reference N.J. Johannesen, M.L. Kolhe, Application of regression tools for load prediction in distributed network for flexible analysis, in Flexibility in Electric Power Distribution Networks (CRC Press, 2021) N.J. Johannesen, M.L. Kolhe, Application of regression tools for load prediction in distributed network for flexible analysis, in Flexibility in Electric Power Distribution Networks (CRC Press, 2021)
11.
go back to reference S. Alla, S.K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning (Springer, 2019) S. Alla, S.K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning (Springer, 2019)
13.
go back to reference S.Q. Du, Lei, X. Jia, detecting concept drift: an information entropy based method using an adaptive sliding window. Intell. Data Anal. 18(3), 337–364 (2014) S.Q. Du, Lei, X. Jia, detecting concept drift: an information entropy based method using an adaptive sliding window. Intell. Data Anal. 18(3), 337–364 (2014)
16.
go back to reference N.J. Johannesen, M.L. Kolhe, M. Goodwin, Comparing recurrent neural networks using principal component analysis for electrical load predictions, in 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, 2021), pp. 1–6 N.J. Johannesen, M.L. Kolhe, M. Goodwin, Comparing recurrent neural networks using principal component analysis for electrical load predictions, in 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, 2021), pp. 1–6
24.
go back to reference H.N. Akouemo, R.J. Povinelli, Time series outlier detection and imputation, in 2014 IEEE PES General Meeting | Conference and Exposition (2014), pp. 1–5 H.N. Akouemo, R.J. Povinelli, Time series outlier detection and imputation, in 2014 IEEE PES General Meeting | Conference and Exposition (2014), pp. 1–5
25.
go back to reference H. Karimipour, S. Geris, A. Dehghantanha, H. Leung, Intelligent anomaly detection for large-scale smart grids, in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) (2019), pp. 1–4 H. Karimipour, S. Geris, A. Dehghantanha, H. Leung, Intelligent anomaly detection for large-scale smart grids, in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) (2019), pp. 1–4
26.
go back to reference Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)CrossRef Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)CrossRef
27.
go back to reference M. Panthi, Anomaly detection in smart grids using machine learning techniques, in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) (2020), pp. 220–222 M. Panthi, Anomaly detection in smart grids using machine learning techniques, in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) (2020), pp. 220–222
28.
go back to reference M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: identifying density-based local outliers, in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Series. SIGMOD ’00 (Association for Computing Machinery, New York, 2000), pp. 93–104. https://doi.org/10.1145/342009.335388 M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: identifying density-based local outliers, in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Series. SIGMOD ’00 (Association for Computing Machinery, New York, 2000), pp. 93–104. https://​doi.​org/​10.​1145/​342009.​335388
30.
go back to reference Z. Xu, D. Kakde, A. Chaudhuri, Automatic hyperparameter tuning method for local outlier factor, with applications to anomaly detection, in 2019 IEEE International Conference on Big Data (Big Data) (IEEE, 2019), pp. 4201–4207 Z. Xu, D. Kakde, A. Chaudhuri, Automatic hyperparameter tuning method for local outlier factor, with applications to anomaly detection, in 2019 IEEE International Conference on Big Data (Big Data) (IEEE, 2019), pp. 4201–4207
33.
go back to reference V. Dehalwar, A. Kalam, M.L. Kolhe, A. Zayegh, Electricity load forecasting for urban area using weather forecast information, in 2016 IEEE International Conference on Power and Renewable Energy (ICPRE) (2016), pp. 355–359 V. Dehalwar, A. Kalam, M.L. Kolhe, A. Zayegh, Electricity load forecasting for urban area using weather forecast information, in 2016 IEEE International Conference on Power and Renewable Energy (ICPRE) (2016), pp. 355–359
Metadata
Title
Vertical Approach Anomaly Detection Using Local Outlier Factor
Authors
Nils Jakob Johannesen
Mohan Lal Kolhe
Morten Goodwin
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20360-2_12