Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Vertical GaN Transistors for Power Electronics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter titled “Vertical GaN Transistors for Power Electronics” takes the reader through the research and development cycle of GaN vertical-device technology, detailing out the three-terminal devices developed over the last decade. Power converters rely on solid state devices featuring diodes and transistors as their basic building blocks. GaN technology is an ever-expanding topic for R&D, proving its potential to solve several challenges in power conversion that cannot be addressed by Si. Medium-voltage (650–900 V) devices using the HEMT configuration have been able to reduce form factor at the system level by driving circuits at higher frequencies (100KHz–1 MHz) and eliminating heat sinks or reducing cooling requirements. Such potentials sparked the interest in GaN device research to address power conversion needs. However, in power conversion the demand of high current (50A and higher) from a single chip for a rated voltage (1KV and higher) is a standard requirement. Particularly when the market is favorable toward electrification of cars and other means of transportations, GaN must expand its scope to provide high power solutions with higher power density compared to Si and even SiC. Vertical devices have been the choice of power device engineers for economic use of the material and maximum use of its physical properties (which allow highest possible blocking field, field mobility, etc.). In this chapter, we discuss vertical transistors first in its normally on form (CAVETs) and then in its normally off design (MOSFET). The advantages and disadvantages are discussed for each type besides describing their operation principles. We have tried to make this chapter scholastic and informative by use of modeling and experimental data for each device we describe. The chapter will help the reader to realize the most recent status of GaN vertical transistors and appreciate its potential in power conversion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.-F. Wu, J. Gritters, L. Shen, R.P. Smith, B. Swenson, kV-class GaN-on-Si HEMTs enabling 99% efficiency converter at 800 V and 100 kHz. IEEE Trans. Power Electron. 29(6), 2634–2637 (2014)CrossRef Y.-F. Wu, J. Gritters, L. Shen, R.P. Smith, B. Swenson, kV-class GaN-on-Si HEMTs enabling 99% efficiency converter at 800 V and 100 kHz. IEEE Trans. Power Electron. 29(6), 2634–2637 (2014)CrossRef
2.
go back to reference J. Honea, J. Kang, High-speed GaN switches for motor drives. Power Electron. Europe 3, 38–41 (2012) J. Honea, J. Kang, High-speed GaN switches for motor drives. Power Electron. Europe 3, 38–41 (2012)
5.
go back to reference S. Chowdhury, M.H. Wong, B.L. Swenson, U.K. Mishra, CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33(1), 41–43 (2012)CrossRef S. Chowdhury, M.H. Wong, B.L. Swenson, U.K. Mishra, CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33(1), 41–43 (2012)CrossRef
6.
go back to reference D. Ji, Y. Yue, J. Gao, S. Chowdhury, Dynamic modeling and power loss analysis of high-frequency power switches based on GaN CAVET. IEEE Trans. Electron Devices 63(10), 4011–4017 (2016)CrossRef D. Ji, Y. Yue, J. Gao, S. Chowdhury, Dynamic modeling and power loss analysis of high-frequency power switches based on GaN CAVET. IEEE Trans. Electron Devices 63(10), 4011–4017 (2016)CrossRef
8.
go back to reference D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, T. Ueda, 1.7kV/1.0 mΩ·cm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2016), pp. 248–251. https://doi.org/10.1109/IEDM.2016.7838385 CrossRef D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, T. Ueda, 1.7kV/1.0 mΩ·cm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2016), pp. 248–251. https://​doi.​org/​10.​1109/​IEDM.​2016.​7838385 CrossRef
11.
go back to reference D. Ji, C. Gupta, S.H. Chan, A. Agarwal, W. Li, S. Keller, U.K. Mishra, S. Chowdhury, Demonstrating > 1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2017), pp. 223–226 D. Ji, C. Gupta, S.H. Chan, A. Agarwal, W. Li, S. Keller, U.K. Mishra, S. Chowdhury, Demonstrating > 1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2017), pp. 223–226
12.
go back to reference Y. Zhang, M. Sun, D. Piedra, J. Hu, Z. Lin, X. Gao, K. Shepard, T. Palacios, 1200 V GaN vertical fin power field-effect transistors, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2017), pp. 215–218 Y. Zhang, M. Sun, D. Piedra, J. Hu, Z. Lin, X. Gao, K. Shepard, T. Palacios, 1200 V GaN vertical fin power field-effect transistors, in Proceedings of IEEE Electron Devices Meeting (IEDM), (2017), pp. 215–218
13.
go back to reference R. Yeluri et al., Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl. Phys. Lett. 106(18), 183502 (2015)CrossRef R. Yeluri et al., Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl. Phys. Lett. 106(18), 183502 (2015)CrossRef
14.
go back to reference D. Ji, A. Agarwal, W. Li, S. Keller, S. Chowdhury, Demonstration of GaN current aperture vertical electron transistors with aperture region formed by ion implantation. IEEE Trans. Electron Devices 65(2), 483–487 (2018)CrossRef D. Ji, A. Agarwal, W. Li, S. Keller, S. Chowdhury, Demonstration of GaN current aperture vertical electron transistors with aperture region formed by ion implantation. IEEE Trans. Electron Devices 65(2), 483–487 (2018)CrossRef
15.
go back to reference D. Ji, S. Chowdhury, A discussion on the DC and switching performance of a gallium nitride CAVET for 1.2kV application, in Proc. IEEE 3 rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), vol. 2-4, (2015), pp. 174–179 D. Ji, S. Chowdhury, A discussion on the DC and switching performance of a gallium nitride CAVET for 1.2kV application, in Proc. IEEE 3 rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), vol. 2-4, (2015), pp. 174–179
17.
go back to reference B.J. Baliga, “Fundamentals of Power Semiconductor Devices,” Chapter 6 (Springer U.S., New York, 2008)CrossRef B.J. Baliga, “Fundamentals of Power Semiconductor Devices,” Chapter 6 (Springer U.S., New York, 2008)CrossRef
18.
go back to reference H. Otake et al., GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm2/(V-s) channel mobility. Jpn. J. Appl. Phys. 46(7L), L599–L601 (2007)CrossRef H. Otake et al., GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm2/(V-s) channel mobility. Jpn. J. Appl. Phys. 46(7L), L599–L601 (2007)CrossRef
21.
go back to reference D. Ji, W. Li, S. Chowdhury, Switching performance analysis of GaN OG-FET using TCAD device-circuit-integrated model, IEEE International Symposium on Power Semiconductor Device & ICs (ISPSD), May 2018 D. Ji, W. Li, S. Chowdhury, Switching performance analysis of GaN OG-FET using TCAD device-circuit-integrated model, IEEE International Symposium on Power Semiconductor Device & ICs (ISPSD), May 2018
Metadata
Title
Vertical GaN Transistors for Power Electronics
Authors
Srabanti Chowdhury
Dong Ji
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77994-2_3