Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

24-02-2024

Vibration Analysis of Shearable Composite Annular Plates Reinforced by Graphene Nanoplatelets Using the Differential Quadrature Method

Authors: Q. Zhou, J. H. Zhang

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical analysis of the vibration problem for the annular plates from functionally graded graphene-platelets-reinforced composites (FG-GPLRC) was carried out. Since the amount of reinforcing platelets was different in different layers of the plates, they had a stratified structure. Based on Mindlin’s theory of moderately thick plates, the differential quadrature method (DQM) was used to study their fundamental frequencies. The first five calculated natural frequencies showed that this method gives results rather well agreeing with data reported in the scientific literature. The natural frequencies of the composite annular plates were studied considering their different geometric parameters: ratios of their external dimensions, GPL weight fractions, GPL distribution patterns, and GPL dimension ratios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Wang, W. C. Wang, Y. Fu, et al., “Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly,” Compos. Part B-Eng., 90, 457-464 (2016).CrossRef L. Wang, W. C. Wang, Y. Fu, et al., “Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly,” Compos. Part B-Eng., 90, 457-464 (2016).CrossRef
2.
go back to reference D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem., 6, 1221-1231 (2005).CrossRefPubMed D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem., 6, 1221-1231 (2005).CrossRefPubMed
3.
go back to reference X. Q. Li, “Nonlinear vibration of graphene reinforced functionally graded beam,” M. D. Thesis (Jiangsu University, Jiangsu, 2018), [in Chinese]. X. Q. Li, “Nonlinear vibration of graphene reinforced functionally graded beam,” M. D. Thesis (Jiangsu University, Jiangsu, 2018), [in Chinese].
4.
go back to reference J. Yang, H. L. Wu, and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams,” Compos. Struct., 161, 111-118 (2017).CrossRef J. Yang, H. L. Wu, and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams,” Compos. Struct., 161, 111-118 (2017).CrossRef
5.
go back to reference M. T. Song, S. Kitipornchai, and J. Yang, “Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets,” Compos. Struct., 159, 579-588 (2017).CrossRef M. T. Song, S. Kitipornchai, and J. Yang, “Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets,” Compos. Struct., 159, 579-588 (2017).CrossRef
6.
go back to reference Y. Niu, W. Zhang, and X. Y. Guo, “Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets,” Eur. J. Mech. A-SOLID, 77, 103798 (2019).ADSMathSciNetCrossRef Y. Niu, W. Zhang, and X. Y. Guo, “Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets,” Eur. J. Mech. A-SOLID, 77, 103798 (2019).ADSMathSciNetCrossRef
7.
go back to reference K. I. Tzou, J. A. Wickert, and A. Akay, “In-plane vibration modes of arbitrarily thick disks,” J. Vib. Acoust., 120, No. 2, 384-391 (1998).CrossRef K. I. Tzou, J. A. Wickert, and A. Akay, “In-plane vibration modes of arbitrarily thick disks,” J. Vib. Acoust., 120, No. 2, 384-391 (1998).CrossRef
8.
go back to reference C. I. Park, “Frequency equation for the in-plane vibration of a clamped circular plate,” J. Sound Vib., 313, No. 1-2, 3, 325-333 (2008). C. I. Park, “Frequency equation for the in-plane vibration of a clamped circular plate,” J. Sound Vib., 313, No. 1-2, 3, 325-333 (2008).
9.
go back to reference S. Bashmal, R. Bhat, and S. Rakheja, “In-plane free vibration of circular annular disks,” J. Sound Vib., 322, 216-226 (2009).ADSCrossRef S. Bashmal, R. Bhat, and S. Rakheja, “In-plane free vibration of circular annular disks,” J. Sound Vib., 322, 216-226 (2009).ADSCrossRef
10.
go back to reference S. Bashmal, R. Bhat, and S. Rakheja, “In-plane free vibration analysis of an annular disks with point elastic support,” Shock. Vib., 18, 627-640 (2011).CrossRef S. Bashmal, R. Bhat, and S. Rakheja, “In-plane free vibration analysis of an annular disks with point elastic support,” Shock. Vib., 18, 627-640 (2011).CrossRef
11.
go back to reference A. Murat, “Free in-plane vibration of super-elliptical plates,” Shock. Vib., 18, 471-484 (2011).CrossRef A. Murat, “Free in-plane vibration of super-elliptical plates,” Shock. Vib., 18, 471-484 (2011).CrossRef
12.
go back to reference Y. Niu, M. H. Yao, and Q. L. Wu, “Resonance in dangerous mode and chaotic dynamics of a rotating pre-twisted graphene reinforced composite blade with variable thickness,” Compos. Struct., 288, 115422 (2022).CrossRef Y. Niu, M. H. Yao, and Q. L. Wu, “Resonance in dangerous mode and chaotic dynamics of a rotating pre-twisted graphene reinforced composite blade with variable thickness,” Compos. Struct., 288, 115422 (2022).CrossRef
13.
go back to reference Y. Niu, M. Q. Wu, M. H. Yao, and Q. L. Wu, “Dynamic instability and internal resonance of rotating pretwisted composite airfoil blades,” Chaos Solution. Fract., 165, 112835 (2022).MathSciNetCrossRef Y. Niu, M. Q. Wu, M. H. Yao, and Q. L. Wu, “Dynamic instability and internal resonance of rotating pretwisted composite airfoil blades,” Chaos Solution. Fract., 165, 112835 (2022).MathSciNetCrossRef
14.
go back to reference F. Allahkarami, “Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment,” Eng. Comput., 38, 583-606 (2022).CrossRef F. Allahkarami, “Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment,” Eng. Comput., 38, 583-606 (2022).CrossRef
15.
go back to reference F. Allahkarami and H. Tohidi, “Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment,” Int. J. Struct. Stab. Dy., 23, No. 03, 2350034 (2023). F. Allahkarami and H. Tohidi, “Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment,” Int. J. Struct. Stab. Dy., 23, No. 03, 2350034 (2023).
16.
go back to reference M. Safarpour, A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi, “Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions,” Mech. Based Des. Struct. Mach., 49, No. 5, 707-737 (2021).CrossRef M. Safarpour, A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi, “Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions,” Mech. Based Des. Struct. Mach., 49, No. 5, 707-737 (2021).CrossRef
17.
go back to reference H. Bisheh, A. Alibeigloo, M. Safarpour, and A. R. Rahimi, “Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method,” Int. J. Appl. Mech., 11, No. 08, 1950073 (2019). H. Bisheh, A. Alibeigloo, M. Safarpour, and A. R. Rahimi, “Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method,” Int. J. Appl. Mech., 11, No. 08, 1950073 (2019).
18.
go back to reference F. Allahkarami and H. Tohidi, “Size-dependent nonlinear free vibration of multilayer functionally graded graphene nanocomposite Timoshenko microbeam under different boundary conditions,” Eur. Phys. J. Plus, 137, No. 5 (2022). F. Allahkarami and H. Tohidi, “Size-dependent nonlinear free vibration of multilayer functionally graded graphene nanocomposite Timoshenko microbeam under different boundary conditions,” Eur. Phys. J. Plus, 137, No. 5 (2022).
19.
go back to reference J. Torabi and R. Ansari, “Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study,” Comput. Methods Appl. Mech. Eng., 324, 327-347 (2017).ADSMathSciNetCrossRef J. Torabi and R. Ansari, “Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study,” Comput. Methods Appl. Mech. Eng., 324, 327-347 (2017).ADSMathSciNetCrossRef
20.
go back to reference J. -B. Han and K. M. liew, “Axisymmetric free vibration of thick annular plates,” Int. J. Mech. Sci., 41, 1089-1109 (1999). J. -B. Han and K. M. liew, “Axisymmetric free vibration of thick annular plates,” Int. J. Mech. Sci., 41, 1089-1109 (1999).
21.
go back to reference T. Irie, G. Yamada, and S. Aomura, “Free vibration of Mindlin annular plates of varying thickness,” J. Sound Vib., 66, No. 2, 187-197 (1979).ADSCrossRef T. Irie, G. Yamada, and S. Aomura, “Free vibration of Mindlin annular plates of varying thickness,” J. Sound Vib., 66, No. 2, 187-197 (1979).ADSCrossRef
22.
go back to reference T. Irie, G. Yamada, and K. Takagi, “Natural frequencies of thick annular plates,” J. Appl. Mech., 49, No. 3, 633-638 (1982).ADSCrossRef T. Irie, G. Yamada, and K. Takagi, “Natural frequencies of thick annular plates,” J. Appl. Mech., 49, No. 3, 633-638 (1982).ADSCrossRef
23.
go back to reference S. L. Nayar, K. K. Raju, and G. V. Rao, “Axisymmetric free vibrations of internally compressed moderately thick annular plates,” Comput. Struct., 53, No. 3, 759-765 (1994).CrossRef S. L. Nayar, K. K. Raju, and G. V. Rao, “Axisymmetric free vibrations of internally compressed moderately thick annular plates,” Comput. Struct., 53, No. 3, 759-765 (1994).CrossRef
24.
go back to reference C. W. Bert, S. K. Jang, and A. G. Striz, “Two new approximate methods for analyzing free vibration of structural components,” AIAAJ., 26, No. 5, 612-618 (1988).ADSCrossRef C. W. Bert, S. K. Jang, and A. G. Striz, “Two new approximate methods for analyzing free vibration of structural components,” AIAAJ., 26, No. 5, 612-618 (1988).ADSCrossRef
25.
go back to reference A. R. Kukreti, J. Farsa, and C. W. Bert, “Fundamental frequency of tapered plates by differential quadrature,” J. Eng. Mech., 118, No. 6, 1221-1237 (1992).CrossRef A. R. Kukreti, J. Farsa, and C. W. Bert, “Fundamental frequency of tapered plates by differential quadrature,” J. Eng. Mech., 118, No. 6, 1221-1237 (1992).CrossRef
26.
go back to reference X. Wang, A. G. Striz, and C. W. Bert, “Free vibration analysis of annular plates by the DQ method,” J. Sound Vib., 164, No. 1, 173-175 (1993).ADSCrossRef X. Wang, A. G. Striz, and C. W. Bert, “Free vibration analysis of annular plates by the DQ method,” J. Sound Vib., 164, No. 1, 173-175 (1993).ADSCrossRef
27.
go back to reference X. Wang, J. Yang, and J. Xiao, “On free vibration analysis of circular annular plates with non-uniform thickness by the differential quadrature method,” J. Sound Vib., 184, No. 3, 547-551 (1995).ADSCrossRef X. Wang, J. Yang, and J. Xiao, “On free vibration analysis of circular annular plates with non-uniform thickness by the differential quadrature method,” J. Sound Vib., 184, No. 3, 547-551 (1995).ADSCrossRef
28.
go back to reference K. M. Liew, J.-B. Han, Z. M. Xiao, and H. Du, “Differential quadrature method for Mindlin plates on Winkler foundations,” Int. J. Mech. Sci., 38, No. 4, 405-421 (1996).CrossRef K. M. Liew, J.-B. Han, Z. M. Xiao, and H. Du, “Differential quadrature method for Mindlin plates on Winkler foundations,” Int. J. Mech. Sci., 38, No. 4, 405-421 (1996).CrossRef
29.
go back to reference R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates,” J. Appl. Mech., 18, No. 1, 31-38 (1951).ADSCrossRef R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates,” J. Appl. Mech., 18, No. 1, 31-38 (1951).ADSCrossRef
30.
go back to reference R. Gholami and R. Ansari, “Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates,” Appl. Math. Model., 65, 627-660 (2019).MathSciNetCrossRef R. Gholami and R. Ansari, “Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates,” Appl. Math. Model., 65, 627-660 (2019).MathSciNetCrossRef
31.
go back to reference A. Wang, H. Chen, Y. Hao, et al., “Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets,” Results Phys., 9, 550-559 (2018).ADSCrossRef A. Wang, H. Chen, Y. Hao, et al., “Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets,” Results Phys., 9, 550-559 (2018).ADSCrossRef
32.
go back to reference T. Li, Z. H. Qi, and X. Ma, “High order hybrid stress quadrilateral element for bending and vibration analysis of Mindlin plates,” J. Dalian Univ. Techno., 54, No. 5, 491-498 (2014). [in Chinese]. T. Li, Z. H. Qi, and X. Ma, “High order hybrid stress quadrilateral element for bending and vibration analysis of Mindlin plates,” J. Dalian Univ. Techno., 54, No. 5, 491-498 (2014). [in Chinese].
33.
go back to reference Q. L. Li, “Static and dynamic responses of functionally graded material beams and circular plates under follow-up loads,” Ph. D. Thesis (Lanzhou University of technology, Lanzhou (2012). [in Chinese]. Q. L. Li, “Static and dynamic responses of functionally graded material beams and circular plates under follow-up loads,” Ph. D. Thesis (Lanzhou University of technology, Lanzhou (2012). [in Chinese].
34.
go back to reference C. W. Bert and M. Malik, “Differential quadrature method in computational mechanics,” Appl. Mech. Rev., 49, 1-27 (1996).ADSCrossRef C. W. Bert and M. Malik, “Differential quadrature method in computational mechanics,” Appl. Mech. Rev., 49, 1-27 (1996).ADSCrossRef
35.
go back to reference J. Yang, H. L. Wu, and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams,” Compos. Struct., 161, 111-118 (2017).CrossRef J. Yang, H. L. Wu, and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams,” Compos. Struct., 161, 111-118 (2017).CrossRef
36.
go back to reference T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner et al., “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol., 3, No. 6 327-331 (2008).ADSCrossRefPubMed T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner et al., “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol., 3, No. 6 327-331 (2008).ADSCrossRefPubMed
37.
go back to reference S. Kitipornchai, D. Chen, and J. Yang, “Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets,” Mater. Des., 116, 656-665 (2017).CrossRef S. Kitipornchai, D. Chen, and J. Yang, “Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets,” Mater. Des., 116, 656-665 (2017).CrossRef
Metadata
Title
Vibration Analysis of Shearable Composite Annular Plates Reinforced by Graphene Nanoplatelets Using the Differential Quadrature Method
Authors
Q. Zhou
J. H. Zhang
Publication date
24-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10178-2

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners