Skip to main content
Top
Published in: Archive of Applied Mechanics 6/2018

20-02-2018 | Original

Vibration of nonlinear bolted lap-jointed beams using Timoshenko theory

Authors: Farhad Adel, Majid Jamal-Omidi

Published in: Archive of Applied Mechanics | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the vibrational behavior of a system which consists of two free–free Timoshenko beams interconnected by a nonlinear joint. To model the bolted lap joint interface, a combination of the linear translational spring, linear and nonlinear torsional springs, and a linear torsional damper is used. The governing equations of motion are derived using the Euler–Lagrange equations. The reduced-order model equations are obtained based on Galerkin method. The set of coupled nonlinear equations are then analytically solved using the harmonic balance approach and numerical simulation. A parametric study is carried out to reveal the influence of different parameters such as linear and nonlinear torsional spring, linear translational spring, and linear torsional damper on the vibration and stability of the bolted lap joint structure. It is shown that the effect of the nonlinear torsional spring on the response of the system is significant. Interestingly, it is observed that in the presence of the nonlinear spring the softening behavior could be changed to hardening behavior. In addition, the effects of the different engineering beam theories on the modeling of the substructures are studied and it is observed that considering the effect of the rotary inertia and shear deformations is significant. In addition, it is observed that neglecting each of them can yield completely wrong interpretations of the system behavior and incorrect results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ibrahim, R., Pettit, C.: Uncertainties and dynamic problems of bolted joints and other fasteners. J. Sound Vib. 279, 857–936 (2005)CrossRef Ibrahim, R., Pettit, C.: Uncertainties and dynamic problems of bolted joints and other fasteners. J. Sound Vib. 279, 857–936 (2005)CrossRef
2.
go back to reference Ahmadian, H., Jalali, H.: Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 21, 1041–1050 (2007)CrossRef Ahmadian, H., Jalali, H.: Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 21, 1041–1050 (2007)CrossRef
3.
go back to reference Ahmadian, H., Jalali, H.: Generic element formulation for modelling bolted lap joints. Mech. Syst. Signal Process. 21, 2318–2334 (2007)CrossRef Ahmadian, H., Jalali, H.: Generic element formulation for modelling bolted lap joints. Mech. Syst. Signal Process. 21, 2318–2334 (2007)CrossRef
4.
go back to reference Ma, X., Bergman, L., Vakakis, A.: Identification of bolted joints through laser vibrometry. J. Sound Vib. 246, 441–460 (2001)CrossRef Ma, X., Bergman, L., Vakakis, A.: Identification of bolted joints through laser vibrometry. J. Sound Vib. 246, 441–460 (2001)CrossRef
5.
go back to reference Jalali, H., Ahmadian, H., Mottershead, J.E.: Identification of nonlinear bolted lap-joint parameters by force-state mapping. Int. J. Solids Struct. 44, 8087–8105 (2007)CrossRefMATH Jalali, H., Ahmadian, H., Mottershead, J.E.: Identification of nonlinear bolted lap-joint parameters by force-state mapping. Int. J. Solids Struct. 44, 8087–8105 (2007)CrossRefMATH
6.
go back to reference Guo, T., Li, L., Cai, L., Zhao, Y.: Alternative method for identification of the dynamic properties of bolted joints. J. Mech. Sci. Technol. 26, 3017–3027 (2012)CrossRef Guo, T., Li, L., Cai, L., Zhao, Y.: Alternative method for identification of the dynamic properties of bolted joints. J. Mech. Sci. Technol. 26, 3017–3027 (2012)CrossRef
7.
go back to reference Sanati, M., Alammari, Y., Ko, J., Park, S.: Identification of joint dynamics in lap joints. Arch. Appl. Mech. 87, 99–113 (2017)CrossRef Sanati, M., Alammari, Y., Ko, J., Park, S.: Identification of joint dynamics in lap joints. Arch. Appl. Mech. 87, 99–113 (2017)CrossRef
8.
go back to reference Reid, J.D., Hiser, N.R.: Detailed modeling of bolted joints with slippage. Finite Elem. Anal. Des. 41, 547–562 (2005)CrossRef Reid, J.D., Hiser, N.R.: Detailed modeling of bolted joints with slippage. Finite Elem. Anal. Des. 41, 547–562 (2005)CrossRef
9.
go back to reference Saxena, M., Tripathi, K., Kanchwala, H.: Investigation of dynamic response of bolted joint test rig under free vibrations using FEA. Int. J. Appl. Eng. Res. 7, 1359–1370 (2012) Saxena, M., Tripathi, K., Kanchwala, H.: Investigation of dynamic response of bolted joint test rig under free vibrations using FEA. Int. J. Appl. Eng. Res. 7, 1359–1370 (2012)
10.
go back to reference Shokrollahi, S., Adel, F.: Finite element model updating of bolted lap joints implementing identification of joint affected region parameters. J. Theor. Appl. Vib. Acoust. 2, 65–78 (2016) Shokrollahi, S., Adel, F.: Finite element model updating of bolted lap joints implementing identification of joint affected region parameters. J. Theor. Appl. Vib. Acoust. 2, 65–78 (2016)
11.
go back to reference Kim, J., Yoon, J.-C., Kang, B.-S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31, 895–911 (2007)CrossRefMATH Kim, J., Yoon, J.-C., Kang, B.-S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31, 895–911 (2007)CrossRefMATH
12.
go back to reference Hong, S.-W., Lee, C.-W.: Identification of linearised joint structural parameters by combined use of measured and computed frequency responses. Mech. Syst. Signal Process. 5, 267–277 (1991)CrossRef Hong, S.-W., Lee, C.-W.: Identification of linearised joint structural parameters by combined use of measured and computed frequency responses. Mech. Syst. Signal Process. 5, 267–277 (1991)CrossRef
13.
go back to reference Ertürk, A., Özgüven, H., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. Int. J. Mach. Tools Manuf. 46, 1901–1912 (2006)CrossRef Ertürk, A., Özgüven, H., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. Int. J. Mach. Tools Manuf. 46, 1901–1912 (2006)CrossRef
14.
go back to reference Mehrpouya, M., Graham, E., Park, S.S.: Identification of multiple joint dynamics using the inverse receptance coupling method. J. Vib. Control 21, 3431–3449 (2015)CrossRef Mehrpouya, M., Graham, E., Park, S.S.: Identification of multiple joint dynamics using the inverse receptance coupling method. J. Vib. Control 21, 3431–3449 (2015)CrossRef
15.
go back to reference Liao, X., Zhang, J.: Energy balancing method to identify nonlinear damping of bolted-joint interface. Key Eng. Mater. 693, 318–323 (2016)CrossRef Liao, X., Zhang, J.: Energy balancing method to identify nonlinear damping of bolted-joint interface. Key Eng. Mater. 693, 318–323 (2016)CrossRef
16.
go back to reference Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J. Sound Vib. 268, 657–678 (2003)CrossRef Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J. Sound Vib. 268, 657–678 (2003)CrossRef
17.
go back to reference Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series. Mech. Syst. Signal Process. 18, 457–489 (2004)CrossRef Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series. Mech. Syst. Signal Process. 18, 457–489 (2004)CrossRef
18.
go back to reference Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Nonlinear system identification in structural dynamics: current status and future directions. In: 25th International Modal Analysis Conference, Orlando (2007) Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Nonlinear system identification in structural dynamics: current status and future directions. In: 25th International Modal Analysis Conference, Orlando (2007)
19.
go back to reference Thothadri, M., Moon, F.: Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39, 63–77 (2005)MathSciNetCrossRefMATH Thothadri, M., Moon, F.: Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39, 63–77 (2005)MathSciNetCrossRefMATH
20.
go back to reference Thothadri, M., Casas, R., Moon, F., D’andrea, R., Johnson Jr., C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)MathSciNetCrossRefMATH Thothadri, M., Casas, R., Moon, F., D’andrea, R., Johnson Jr., C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)MathSciNetCrossRefMATH
21.
go back to reference Hajj, M., Fung, J., Nayfeh, A., Fahey, S.F.: Damping identification using perturbation techniques and higher-order spectra. Nonlinear Dyn. 23, 189–203 (2000)CrossRefMATH Hajj, M., Fung, J., Nayfeh, A., Fahey, S.F.: Damping identification using perturbation techniques and higher-order spectra. Nonlinear Dyn. 23, 189–203 (2000)CrossRefMATH
22.
go back to reference Noël, J.-P., Kerschen, G.: 10 years of advances in nonlinear system identification in structural dynamics: a review. In: Proceedings of ISMA 2016-International Conference on Noise and Vibration Engineering (2016) Noël, J.-P., Kerschen, G.: 10 years of advances in nonlinear system identification in structural dynamics: a review. In: Proceedings of ISMA 2016-International Conference on Noise and Vibration Engineering (2016)
23.
go back to reference Di Maio, D.: Identification of dynamic nonlinearities of bolted structures using strain analysis. Nonlinear Dyn. 1, 387–414 (2016) Di Maio, D.: Identification of dynamic nonlinearities of bolted structures using strain analysis. Nonlinear Dyn. 1, 387–414 (2016)
24.
go back to reference Ahmadian, H., Azizi, H.: Stability analysis of a nonlinear jointed beam under distributed follower force. J. Vib. Control 17, 27–38 (2011)MathSciNetCrossRefMATH Ahmadian, H., Azizi, H.: Stability analysis of a nonlinear jointed beam under distributed follower force. J. Vib. Control 17, 27–38 (2011)MathSciNetCrossRefMATH
25.
go back to reference Jahani, K., Nobari, A.: Identification of dynamic (Young’s and shear) moduli of a structural adhesive using modal based direct model updating method. Exp. Mech. 48, 599–611 (2008)CrossRef Jahani, K., Nobari, A.: Identification of dynamic (Young’s and shear) moduli of a structural adhesive using modal based direct model updating method. Exp. Mech. 48, 599–611 (2008)CrossRef
26.
go back to reference Li, W.L.: A new method for structural model updating and joint stiffness identification. Mech. Syst. Signal Process. 16, 155–167 (2002)CrossRef Li, W.L.: A new method for structural model updating and joint stiffness identification. Mech. Syst. Signal Process. 16, 155–167 (2002)CrossRef
27.
go back to reference Ratcliffe, M., Lieven, N.: A generic element-based method for joint identification. Mech. Syst. Signal Process. 14, 3–28 (2000)CrossRef Ratcliffe, M., Lieven, N.: A generic element-based method for joint identification. Mech. Syst. Signal Process. 14, 3–28 (2000)CrossRef
28.
go back to reference Wang, J., Chuang, S.: Reducing errors in the identification of structural joint parameters using error functions. J. Sound Vib. 273, 295–316 (2004)CrossRef Wang, J., Chuang, S.: Reducing errors in the identification of structural joint parameters using error functions. J. Sound Vib. 273, 295–316 (2004)CrossRef
29.
go back to reference Segalman, D.J., Paez, T., Smallwood, D., Sumali, A., Urbina, A.: Status and integrated road-map for joints modeling research. Sandia National Laboratories, SAND2003-0897 (2003) Segalman, D.J., Paez, T., Smallwood, D., Sumali, A., Urbina, A.: Status and integrated road-map for joints modeling research. Sandia National Laboratories, SAND2003-0897 (2003)
30.
go back to reference Liu, W., Ewins, D.: Substructure synthesis via elastic media. J. Sound Vib. 257, 361–379 (2002)CrossRef Liu, W., Ewins, D.: Substructure synthesis via elastic media. J. Sound Vib. 257, 361–379 (2002)CrossRef
31.
go back to reference Ren, Y., Beards, C.: Identification of ’effective’ linear joints using coupling and joint identification techniques. J. Vib. Acoust. 120, 331–338 (1998)CrossRef Ren, Y., Beards, C.: Identification of ’effective’ linear joints using coupling and joint identification techniques. J. Vib. Acoust. 120, 331–338 (1998)CrossRef
32.
go back to reference Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84, 25–33 (2005)CrossRef Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84, 25–33 (2005)CrossRef
33.
go back to reference Ouyang, H., Oldfield, M., Mottershead, J.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48, 1447–1455 (2006)CrossRef Ouyang, H., Oldfield, M., Mottershead, J.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48, 1447–1455 (2006)CrossRef
34.
go back to reference Magnevall, M., Josefsson, A., Ahlin, K.: Parameter estimation of hysteresis elements using harmonic input. In: IMAC XXV (2007) Magnevall, M., Josefsson, A., Ahlin, K.: Parameter estimation of hysteresis elements using harmonic input. In: IMAC XXV (2007)
35.
go back to reference Boeswald, M., Link, M.: Identification of non-linear joint parameters by using frequency response residuals. In: Proceedings of the 2004 International Conference on Noise and Vibration Engineering (ISMA2004), Leuven, Belgium, September (2004) Boeswald, M., Link, M.: Identification of non-linear joint parameters by using frequency response residuals. In: Proceedings of the 2004 International Conference on Noise and Vibration Engineering (ISMA2004), Leuven, Belgium, September (2004)
36.
go back to reference Dietl, J.M., Wickenheiser, A.M., Garcia, E.: A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Materials and Structures 19, Paper No. 055018 (2010) Dietl, J.M., Wickenheiser, A.M., Garcia, E.: A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Materials and Structures 19, Paper No. 055018 (2010)
37.
go back to reference Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007) Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)
38.
go back to reference Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior ansd modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23, 183–199 (2012)CrossRef Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior ansd modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23, 183–199 (2012)CrossRef
39.
go back to reference Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)MATH Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)MATH
40.
go back to reference Ghayesh, M.H., Amabili, M., Farokhi, H.: Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013)MathSciNetCrossRefMATH Ghayesh, M.H., Amabili, M., Farokhi, H.: Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013)MathSciNetCrossRefMATH
41.
go back to reference Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia. Int. J. Mech. Sci. 133, 227–239 (2017)CrossRef Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia. Int. J. Mech. Sci. 133, 227–239 (2017)CrossRef
42.
go back to reference Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Eng. Sci. 111, 113–133 (2017)MathSciNetCrossRef Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Eng. Sci. 111, 113–133 (2017)MathSciNetCrossRef
43.
go back to reference Rezaei, M., Khadem, S.E., Firoozy, P.: Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. Int. J. Eng. Sci. 118, 1–15 (2017)MathSciNetCrossRef Rezaei, M., Khadem, S.E., Firoozy, P.: Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. Int. J. Eng. Sci. 118, 1–15 (2017)MathSciNetCrossRef
44.
go back to reference Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)CrossRefMATH Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)CrossRefMATH
45.
go back to reference Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int. J. Non Linear Mech. 67, 251–266 (2014)CrossRef Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int. J. Non Linear Mech. 67, 251–266 (2014)CrossRef
46.
go back to reference Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)CrossRef Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)CrossRef
47.
go back to reference Jamal-Omidi, M., ShayanMehr, M., Shokrollahi, S., Rafiee, R.: A study on nonlinear vibration behavior of CNT-based representative volume element. Aerosp. Sci. Technol. 55, 272–281 (2016)CrossRef Jamal-Omidi, M., ShayanMehr, M., Shokrollahi, S., Rafiee, R.: A study on nonlinear vibration behavior of CNT-based representative volume element. Aerosp. Sci. Technol. 55, 272–281 (2016)CrossRef
Metadata
Title
Vibration of nonlinear bolted lap-jointed beams using Timoshenko theory
Authors
Farhad Adel
Majid Jamal-Omidi
Publication date
20-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 6/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1353-2

Other articles of this Issue 6/2018

Archive of Applied Mechanics 6/2018 Go to the issue

Premium Partners