Skip to main content
Top

2021 | OriginalPaper | Chapter

Vibro-Acoustic Metamaterials for Improved Interior NVH Performance in Vehicles

Authors : Lucas Van Belle, Luca Sangiuliano, Noé Geraldo Rocha de Melo Filho, Matias Clasing Villanueva, Régis Boukadia, Sepide Ahsani, Felipe Alves Pires, Ze Zhang, Claus Claeys, Elke Deckers, Bert Pluymers, Wim Desmet

Published in: Future Interior Concepts

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to environmental and economic requirements, lightweight design is increasingly used in automotive applications. However, the use of lightweight design typically comes at the cost of impaired NVH performance. Classic solutions to improve the NVH performance usually rely on adding mass or volume, conflicting with lightweight design. In the search for innovative lightweight and compact solutions for noise and vibration reduction, vibro-acoustic locally resonant metamaterials have recently emerged. Through the introduction of local resonances in a flexible host structure on a sub-wavelength scale, frequency ranges without free wave propagation can be created, referred to as stop bands. These stop bands enable achieving targeted frequency ranges of strong noise and vibration attenuation, while the sub-wavelength nature of locally resonant metamaterials enables lighter and thinner vibro-acoustic solutions, which are also able to target the hard-to-address low-frequency range. Since their emergence, the potential of locally resonant metamaterials has been demonstrated and their application to automotive NVH problems has attracted increasing attention. This chapter gives an overview of the vibro-acoustic locally resonant metamaterial research, discusses the potential of these metamaterials for automotive applications and presents a locally resonant metamaterial application for interior noise reduction in a targeted frequency range in a real vehicle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Taub AI, Krajewski PE, Luo AA, Owens JN (2007) The evolution of technology for materials processing over the last 50 years: the automotive example. JOM 59(2):48–57CrossRef Taub AI, Krajewski PE, Luo AA, Owens JN (2007) The evolution of technology for materials processing over the last 50 years: the automotive example. JOM 59(2):48–57CrossRef
2.
go back to reference World Health Organization (2018) Environmental noise guidelines for the European region World Health Organization (2018) Environmental noise guidelines for the European region
3.
go back to reference Goetchius G (2011) Leading the charge–the future of electric vehicle noise control. Sound Vibr 45(4):5–8 Goetchius G (2011) Leading the charge–the future of electric vehicle noise control. Sound Vibr 45(4):5–8
4.
go back to reference Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef
5.
6.
go back to reference Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov Phys Uspekhi 10(4):509–514CrossRef Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov Phys Uspekhi 10(4):509–514CrossRef
7.
go back to reference Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462CrossRef Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462CrossRef
8.
go back to reference Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef
9.
go back to reference Fok L, Ambati M, Zhang X (2008) Acoustic metamaterials. MRS Bull 33(10):931–934CrossRef Fok L, Ambati M, Zhang X (2008) Acoustic metamaterials. MRS Bull 33(10):931–934CrossRef
10.
go back to reference Brillouin L (1946) Wave propagation in periodic structures. Int Ser Phys Brillouin L (1946) Wave propagation in periodic structures. Int Ser Phys
11.
go back to reference Ho KM, Chan CT, Soukoulis CM (1990) Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett 65(25):3152–3155CrossRef Ho KM, Chan CT, Soukoulis CM (1990) Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett 65(25):3152–3155CrossRef
12.
go back to reference Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67(17):2295–2298CrossRef Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67(17):2295–2298CrossRef
13.
go back to reference Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025CrossRef Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025CrossRef
14.
go back to reference Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vibr 158(2):377–382CrossRef Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vibr 158(2):377–382CrossRef
15.
go back to reference Kittel C (2010) Introduction to solid state physics Kittel C (2010) Introduction to solid state physics
16.
go back to reference Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47(11):2075–2084CrossRef Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47(11):2075–2084CrossRef
17.
go back to reference Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70(5):055602CrossRef Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70(5):055602CrossRef
18.
go back to reference Goffaux C, Sánchez-Dehesa J, Yeyati AL, Lambin P, Khelif A, Vasseur JO, Djafari-Rouhani B (2002) Evidence of Fano-like interference phenomena in locally resonant materials. Phys Rev Lett 88(22):225–502CrossRef Goffaux C, Sánchez-Dehesa J, Yeyati AL, Lambin P, Khelif A, Vasseur JO, Djafari-Rouhani B (2002) Evidence of Fano-like interference phenomena in locally resonant materials. Phys Rev Lett 88(22):225–502CrossRef
19.
go back to reference Liu Z, Chan CT, Sheng P (2005) Analytic model of phononic crystals with local resonances. Phys Rev B Condens Matter Mater Phys 71(1):1–8CrossRef Liu Z, Chan CT, Sheng P (2005) Analytic model of phononic crystals with local resonances. Phys Rev B Condens Matter Mater Phys 71(1):1–8CrossRef
20.
go back to reference Calius EP, Bremaud X, Smith B, Hall A (2009) Negative mass sound shielding structures: early results. Physica Status Solidi 246(9):2089–2097CrossRef Calius EP, Bremaud X, Smith B, Hall A (2009) Negative mass sound shielding structures: early results. Physica Status Solidi 246(9):2089–2097CrossRef
21.
go back to reference Ho KM, Cheng CK, Yang Z, Zhang XX, Sheng P (2003) Broadband locally resonant sonic shields. Appl Phys Lett 83(26):5566–5568CrossRef Ho KM, Cheng CK, Yang Z, Zhang XX, Sheng P (2003) Broadband locally resonant sonic shields. Appl Phys Lett 83(26):5566–5568CrossRef
22.
go back to reference Hsu JC, Wu TT (2007) Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl Phys Lett 90(20):201904CrossRef Hsu JC, Wu TT (2007) Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl Phys Lett 90(20):201904CrossRef
23.
go back to reference Krushynska A, Kouznetsova V, Geers M (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mechan Phys Solids 71:179–196CrossRef Krushynska A, Kouznetsova V, Geers M (2014) Towards optimal design of locally resonant acoustic metamaterials. J Mechan Phys Solids 71:179–196CrossRef
24.
go back to reference Xiao W, Zeng GW, Cheng YS (2008) Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs. Appl Acoust 69(3):255–261CrossRef Xiao W, Zeng GW, Cheng YS (2008) Flexural vibration band gaps in a thin plate containing a periodic array of hemmed discs. Appl Acoust 69(3):255–261CrossRef
25.
go back to reference Xiao Y, Wen J, Wen X (2012) Flexural wave band gaps in locally resonant thin plates with periodically attached springmass resonators. J Phys D Appl Phys 45(19):195401CrossRef Xiao Y, Wen J, Wen X (2012) Flexural wave band gaps in locally resonant thin plates with periodically attached springmass resonators. J Phys D Appl Phys 45(19):195401CrossRef
26.
go back to reference Claeys C, Vergote K, Sas P, Desmet W (2013) On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. J Sound Vibr 332(6):1418–1436CrossRef Claeys C, Vergote K, Sas P, Desmet W (2013) On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. J Sound Vibr 332(6):1418–1436CrossRef
27.
go back to reference Wu TT, Huang ZG, Tsai TC, Wu TC (2008) Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl Phys Lett 93(11):98–101CrossRef Wu TT, Huang ZG, Tsai TC, Wu TC (2008) Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl Phys Lett 93(11):98–101CrossRef
28.
go back to reference Oudich M, Senesi M, Assouar MB, Ruzenne M, Sun JH, Vincent B, Hou Z, Wu TT (2011) Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys Rev B 84(16):165136CrossRef Oudich M, Senesi M, Assouar MB, Ruzenne M, Sun JH, Vincent B, Hou Z, Wu TT (2011) Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys Rev B 84(16):165136CrossRef
29.
go back to reference Assouar B, Senesi M, Oudich M, Ruzzene M, Hou Z (2012) Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Appl Phys Lett 101(17):173–505 Assouar B, Senesi M, Oudich M, Ruzzene M, Hou Z (2012) Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Appl Phys Lett 101(17):173–505
30.
go back to reference Xiao Y, Wen J, Huang L, Wen X (2014) Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators. J Phys D Appl Phys 47(4):045307CrossRef Xiao Y, Wen J, Huang L, Wen X (2014) Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators. J Phys D Appl Phys 47(4):045307CrossRef
31.
go back to reference Van Belle L, Claeys C, Deckers E, Desmet W (2017) On the impact of damping on the dispersion curves of a locally resonant metamaterial: modelling and experimental validation. J Sound Vibr 409:1–23CrossRef Van Belle L, Claeys C, Deckers E, Desmet W (2017) On the impact of damping on the dispersion curves of a locally resonant metamaterial: modelling and experimental validation. J Sound Vibr 409:1–23CrossRef
32.
go back to reference Claeys C, Vivolo M, Sas P, Desmet W (2012) Study of honeycomb panels with local cell resonators to obtain low-frequency vibrational stopbands. In: Proceedings of DYNACOMP 2012. Arcachon, France Claeys C, Vivolo M, Sas P, Desmet W (2012) Study of honeycomb panels with local cell resonators to obtain low-frequency vibrational stopbands. In: Proceedings of DYNACOMP 2012. Arcachon, France
33.
go back to reference Liu L, Hussein MI (2012) Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J Appl Mechan 79(1):011003CrossRef Liu L, Hussein MI (2012) Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J Appl Mechan 79(1):011003CrossRef
34.
go back to reference Xiao Y, Wen J, Wang G, Wen X (2013) Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators. J Vibr Acoust 135(4):041006CrossRef Xiao Y, Wen J, Wang G, Wen X (2013) Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators. J Vibr Acoust 135(4):041006CrossRef
35.
go back to reference Claeys C, de Melo Filho NGR, Van Belle L, Deckers E, Desmet W (2017) Design and validation of metamaterials for multiple structural stop bands in waveguides. Ext Mechan Lett 12:7–22 Claeys C, de Melo Filho NGR, Van Belle L, Deckers E, Desmet W (2017) Design and validation of metamaterials for multiple structural stop bands in waveguides. Ext Mechan Lett 12:7–22
36.
go back to reference Nateghi A, Sangiuliano L, Claeys C, Deckers E, Pluymers B, Desmet W (2019) Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes. J Sound Vibr 455:96–117CrossRef Nateghi A, Sangiuliano L, Claeys C, Deckers E, Pluymers B, Desmet W (2019) Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes. J Sound Vibr 455:96–117CrossRef
37.
go back to reference Claeys C, Sas P, Desmet W (2014) On the acoustic radiation efficiency of local resonance based stop band materials. J Sound Vibr 333(14):3203–3213CrossRef Claeys C, Sas P, Desmet W (2014) On the acoustic radiation efficiency of local resonance based stop band materials. J Sound Vibr 333(14):3203–3213CrossRef
38.
go back to reference Li P, Yao S, Zhou X, Huang G, Hu G (2014) Effective medium theory of thin-plate acoustic metamaterials. J Acoustic Soc Am 135(4):1844–1852CrossRef Li P, Yao S, Zhou X, Huang G, Hu G (2014) Effective medium theory of thin-plate acoustic metamaterials. J Acoustic Soc Am 135(4):1844–1852CrossRef
39.
go back to reference Oudich M, Zhou X, Assouar MB (2014) General analytical approach for sound transmission loss analysis through a thick metamaterial plate. J Appl Phys 116(19):193509CrossRef Oudich M, Zhou X, Assouar MB (2014) General analytical approach for sound transmission loss analysis through a thick metamaterial plate. J Appl Phys 116(19):193509CrossRef
40.
go back to reference Xiao Y, Wen J, Wen X (2012) Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators. J Sound Vibr 331(25):5408–5423CrossRef Xiao Y, Wen J, Wen X (2012) Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators. J Sound Vibr 331(25):5408–5423CrossRef
41.
go back to reference Song Y, Feng L, Wen J, Yu D, Wen X (2015) Reduction of the sound transmission of a periodic sandwich plate using the stop band concept. Compos Struct 128:428–436CrossRef Song Y, Feng L, Wen J, Yu D, Wen X (2015) Reduction of the sound transmission of a periodic sandwich plate using the stop band concept. Compos Struct 128:428–436CrossRef
42.
go back to reference de Melo Filho NGR, Van Belle L, Claeys C, Deckers E, Desmet W (2019) Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance. J Sound Vibr 442:28–44CrossRef de Melo Filho NGR, Van Belle L, Claeys C, Deckers E, Desmet W (2019) Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance. J Sound Vibr 442:28–44CrossRef
43.
go back to reference Van Belle L, Claeys C, Deckers E, Desmet W (2019) The impact of damping on the sound transmission loss of locally resonant metamaterial plates. J Sound Vibr 461:114909CrossRef Van Belle L, Claeys C, Deckers E, Desmet W (2019) The impact of damping on the sound transmission loss of locally resonant metamaterial plates. J Sound Vibr 461:114909CrossRef
44.
go back to reference Assouar B, Oudich M, Zhou X (2016) Métamatériaux acoustiques pour l’isolation sonique. Comptes Rendus Physique 17(5):524–532CrossRef Assouar B, Oudich M, Zhou X (2016) Métamatériaux acoustiques pour l’isolation sonique. Comptes Rendus Physique 17(5):524–532CrossRef
45.
go back to reference Hall A, Dodd G, Calius E (2017) Diffuse field measurements of locally resonant partitions. In: Proceedings of ACOUSTICS 2017 Hall A, Dodd G, Calius E (2017) Diffuse field measurements of locally resonant partitions. In: Proceedings of ACOUSTICS 2017
46.
go back to reference Li J, Li S (2017) Sound transmission through metamaterial-based double-panel structures with poroelastic cores. Acta Acustica United with Acustica 103(5):869–884CrossRef Li J, Li S (2017) Sound transmission through metamaterial-based double-panel structures with poroelastic cores. Acta Acustica United with Acustica 103(5):869–884CrossRef
47.
go back to reference Claeys C, Deckers E, Pluymers B, Desmet W (2016) A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mechan Syst Signal Process 70–71:853–880CrossRef Claeys C, Deckers E, Pluymers B, Desmet W (2016) A lightweight vibro-acoustic metamaterial demonstrator: numerical and experimental investigation. Mechan Syst Signal Process 70–71:853–880CrossRef
48.
go back to reference de Melo Filho NGR, Claeys C, Deckers E, Desmet W (2019) Realisation of a thermoformed vibro-acoustic metamaterial for increased STL in acoustic resonance driven environments. Appl Acoust 156:78–82CrossRef de Melo Filho NGR, Claeys C, Deckers E, Desmet W (2019) Realisation of a thermoformed vibro-acoustic metamaterial for increased STL in acoustic resonance driven environments. Appl Acoust 156:78–82CrossRef
49.
go back to reference Ge H, Yang M, Ma C, Lu MH, Chen YF, Fang N, Sheng P (2018) Breaking the barriers: advances in acoustic functional materials. Natl Sci Rev 5(2):159–182CrossRef Ge H, Yang M, Ma C, Lu MH, Chen YF, Fang N, Sheng P (2018) Breaking the barriers: advances in acoustic functional materials. Natl Sci Rev 5(2):159–182CrossRef
50.
go back to reference Wu X, Sun L, Zuo S, Liu P, Huang H (2019) Vibration reduction of car body based on 2D dual-base locally resonant phononic crystal. Appl Acoust 151:1–9CrossRef Wu X, Sun L, Zuo S, Liu P, Huang H (2019) Vibration reduction of car body based on 2D dual-base locally resonant phononic crystal. Appl Acoust 151:1–9CrossRef
51.
go back to reference Wu X, Zhang M, Zuo S, Huang H, Wu H (2019) An investigation on interior noise reduction using 2D locally resonant phononic crystal with point defect on car ceiling. J Vibr Control 25(2):386–396CrossRef Wu X, Zhang M, Zuo S, Huang H, Wu H (2019) An investigation on interior noise reduction using 2D locally resonant phononic crystal with point defect on car ceiling. J Vibr Control 25(2):386–396CrossRef
52.
go back to reference Chang KJ, Jung J, Kim HG, Choi DR, Wang S (2018) An application of acoustic metamaterial for reducing noise transfer through car body panels. SAE Technical Paper 2018-01-1566 Chang KJ, Jung J, Kim HG, Choi DR, Wang S (2018) An application of acoustic metamaterial for reducing noise transfer through car body panels. SAE Technical Paper 2018-01-1566
53.
go back to reference Jung J, Kim HG, Goo S, Chang KJ, Wang S (2019) Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mechan Syst Signal Process 122:206–231CrossRef Jung J, Kim HG, Goo S, Chang KJ, Wang S (2019) Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mechan Syst Signal Process 122:206–231CrossRef
54.
go back to reference Chang KJ, de Melo Filho NGR, Van Belle L, Claeys C, Desmet W (2019) A study on the application of locally resonant acoustic metamaterial for reducing a vehicle’s engine noise. In: Proceedings of Internoise 2019 Chang KJ, de Melo Filho NGR, Van Belle L, Claeys C, Desmet W (2019) A study on the application of locally resonant acoustic metamaterial for reducing a vehicle’s engine noise. In: Proceedings of Internoise 2019
55.
go back to reference Sangiuliano L, Claeys C, Deckers E, De Smet J, Pluymers B, Desmet W (2019) Reducing vehicle interior nvh by means of locally resonant metamaterial patches on rear shock towers. SAE Technical Paper 2019-01-1502 Sangiuliano L, Claeys C, Deckers E, De Smet J, Pluymers B, Desmet W (2019) Reducing vehicle interior nvh by means of locally resonant metamaterial patches on rear shock towers. SAE Technical Paper 2019-01-1502
56.
go back to reference Douville H, Masson P, Berry A (2006) On-resonance transmissibility methodology for quantifying the structure-borne road noise of an automotive suspension assembly. Appl Acoust 67(4):358–382CrossRef Douville H, Masson P, Berry A (2006) On-resonance transmissibility methodology for quantifying the structure-borne road noise of an automotive suspension assembly. Appl Acoust 67(4):358–382CrossRef
57.
go back to reference Kindt P, Berckmans D, De Coninck F, Sas P, Desmet W (2009) Experimental analysis of the structure-borne tyre/road noise due to road discontinuities. Mechan Syst Signal Process 23(8):2557–2574CrossRef Kindt P, Berckmans D, De Coninck F, Sas P, Desmet W (2009) Experimental analysis of the structure-borne tyre/road noise due to road discontinuities. Mechan Syst Signal Process 23(8):2557–2574CrossRef
58.
go back to reference Hartleip LG, Roggenkamp TJ (2005) Case study-experimental determination of airborne and structure-borne road noise spectral content on passenger vehicles. SAE Technical Paper 2005-01-2522 Hartleip LG, Roggenkamp TJ (2005) Case study-experimental determination of airborne and structure-borne road noise spectral content on passenger vehicles. SAE Technical Paper 2005-01-2522
59.
go back to reference Kido I, Nakamura A, Hayashi T, Asai M (1999) Suspension vibration analysis for road noise using finite element model. SAE Technical Paper 1999-01-1788 Kido I, Nakamura A, Hayashi T, Asai M (1999) Suspension vibration analysis for road noise using finite element model. SAE Technical Paper 1999-01-1788
60.
go back to reference Kim G, Holland K, Lalor N (1997) Identification of the airborne component of tyre-induced vehicle interior noise. Appl Acoust 51(2):141–156CrossRef Kim G, Holland K, Lalor N (1997) Identification of the airborne component of tyre-induced vehicle interior noise. Appl Acoust 51(2):141–156CrossRef
61.
go back to reference Sakata T, Morimura H, Ide H (1990) Effects of tire cavity resonance on vehicle road noise. Tire Sci Technol 18(2):68–79CrossRef Sakata T, Morimura H, Ide H (1990) Effects of tire cavity resonance on vehicle road noise. Tire Sci Technol 18(2):68–79CrossRef
62.
go back to reference Tatlow J, Ballatore M (2017) Road noise input identification for vehicle interior noise by multi-reference transfer path analysis. Proc Eng 199:3296–3301CrossRef Tatlow J, Ballatore M (2017) Road noise input identification for vehicle interior noise by multi-reference transfer path analysis. Proc Eng 199:3296–3301CrossRef
63.
go back to reference Wang G, Wen X, Wen J, Shao L, Liu Y (2004) Two-dimensional locally resonant phononic crystals with binary structures. Phys Rev Lett 93(15):154302CrossRef Wang G, Wen X, Wen J, Shao L, Liu Y (2004) Two-dimensional locally resonant phononic crystals with binary structures. Phys Rev Lett 93(15):154302CrossRef
64.
go back to reference Mace BR, Manconi E (2008) Modelling wave propagation in two-dimensional structures using finite element analysis. J Sound Vibr 318(4–5):884–902CrossRef Mace BR, Manconi E (2008) Modelling wave propagation in two-dimensional structures using finite element analysis. J Sound Vibr 318(4–5):884–902CrossRef
65.
go back to reference Cremer L, Heckl M (2013) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, Berlin Cremer L, Heckl M (2013) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, Berlin
66.
go back to reference Sangiuliano L, Claeys C, Deckers E, Pluymers B, Desmet W (2018) Force isolation by locally resonant metamaterials to reduce NVH. SAE Technical Paper 2018-01-1544 Sangiuliano L, Claeys C, Deckers E, Pluymers B, Desmet W (2018) Force isolation by locally resonant metamaterials to reduce NVH. SAE Technical Paper 2018-01-1544
67.
go back to reference SAE: SAE J670, Vehicle dynamics terminology SAE: SAE J670, Vehicle dynamics terminology
Metadata
Title
Vibro-Acoustic Metamaterials for Improved Interior NVH Performance in Vehicles
Authors
Lucas Van Belle
Luca Sangiuliano
Noé Geraldo Rocha de Melo Filho
Matias Clasing Villanueva
Régis Boukadia
Sepide Ahsani
Felipe Alves Pires
Ze Zhang
Claus Claeys
Elke Deckers
Bert Pluymers
Wim Desmet
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-51044-2_2

Premium Partner