Skip to main content
Top

2023 | OriginalPaper | Chapter

Video Content Analysis Using Deep Learning Methods

Authors : Gara Kiran Kumar, Athota Kavitha

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the emergence of low-cost video recording devices, the internet is flooded with videos. However, most videos are uncategorized, necessitating video content analysis. This review effort addresses visual big data feature extraction, video segmentation, classification, and abstract video challenges. Exploring compressive sensing, deep learning (DL), and kernel methods for various tasks in video content analysis include video classification, clustering, dimension reduction, event detection, and activity recognition. DL is used to examine video footage recognition and classification. This study examines the algorithms’ flaws and benefits when applied to datasets. The classification approaches used Naive Bayes, support vector machine (SVM), and Deep Convolution Neural Network (DCNN) with Deer Hunting Optimization (DHO). Other approaches have higher false discovery and alarm rates than the DCNNDHO algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gaunt, K.D.: YouTube, twerking & you: context collapse and the handheld co‐presence of black girls and Miley Cyrus. J. Popular Music Stud. 27(3), 244–273 (2015). ISBN 9781315689593 Gaunt, K.D.: YouTube, twerking & you: context collapse and the handheld co‐presence of black girls and Miley Cyrus. J. Popular Music Stud. 27(3), 244–273 (2015). ISBN 9781315689593
5.
go back to reference Zhang, N., et al.: A generic approach for systematic analysis of sports videos. ACM Trans. Intell. Syst. Technol. 3(3) (2012). Article 46 Zhang, N., et al.: A generic approach for systematic analysis of sports videos. ACM Trans. Intell. Syst. Technol. 3(3) (2012). Article 46
6.
go back to reference Cricri, F., et al.: Sport type classification of mobile videos. IEEE Trans. Multimedia 16(4), 917–932 (2014)CrossRef Cricri, F., et al.: Sport type classification of mobile videos. IEEE Trans. Multimedia 16(4), 917–932 (2014)CrossRef
9.
go back to reference Pang, Y., Yan, H., Yuan, Y., Wang, K.: Robust CoHOG feature extraction in human-centered image/video management system. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 458-468 (2012) Pang, Y., Yan, H., Yuan, Y., Wang, K.: Robust CoHOG feature extraction in human-centered image/video management system. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 458-468 (2012)
10.
go back to reference Cambria, E., Poria, S., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)CrossRef Cambria, E., Poria, S., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)CrossRef
11.
go back to reference Xu, C., et al.: Visual sentiment prediction with deep convolutional neural networks (2014) Xu, C., et al.: Visual sentiment prediction with deep convolutional neural networks (2014)
12.
go back to reference You, Q., et al.: Robust image sentiment analysis using progressively trained and domain transferred deep networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015) You, Q., et al.: Robust image sentiment analysis using progressively trained and domain transferred deep networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
13.
go back to reference Tran, D., et al.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015) Tran, D., et al.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)
14.
go back to reference Poria, S., et al.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: 2016 IEEE 16th International Conference on Data Mining (ICDM) (2016) Poria, S., et al.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: 2016 IEEE 16th International Conference on Data Mining (ICDM) (2016)
15.
go back to reference Yong, S.-P., Deng, J.D., Purvis, M.K.: Wildlife video key-frame extraction based on novelty detection in semantic context. Multimedia Tools Appl. 62(2), 359–376 (2013)CrossRef Yong, S.-P., Deng, J.D., Purvis, M.K.: Wildlife video key-frame extraction based on novelty detection in semantic context. Multimedia Tools Appl. 62(2), 359–376 (2013)CrossRef
17.
go back to reference Zhang, W., Duan, P., Lu, Q., Liu, X.: A realtime framework for video object detection with storm. In: Ubiquitous Intelligence and Computing, 2014 IEEE 11th International Conference on and Autonomic and Trusted Computing, IEEE 14th International Conference on Scalable Computing and Communications and Its Associated Workshops (UTC-ATC-ScalCom), pp. 732–737 (2014). https://doi.org/10.1109/UIC-ATC-ScalCom.2014.115 Zhang, W., Duan, P., Lu, Q., Liu, X.: A realtime framework for video object detection with storm. In: Ubiquitous Intelligence and Computing, 2014 IEEE 11th International Conference on and Autonomic and Trusted Computing, IEEE 14th International Conference on Scalable Computing and Communications and Its Associated Workshops (UTC-ATC-ScalCom), pp. 732–737 (2014). https://​doi.​org/​10.​1109/​UIC-ATC-ScalCom.​2014.​115
21.
go back to reference Zhao, L., Wang, Z., Zhang, G.: Facial expression recognition from video sequences based on spatial-temporal motion local binary pattern and Gabor multiorientation fusion histogram. Math. Probl. Eng. 2017, 12. Article ID 7206041. https://doi.org/10.1155/2017/7206041 Zhao, L., Wang, Z., Zhang, G.: Facial expression recognition from video sequences based on spatial-temporal motion local binary pattern and Gabor multiorientation fusion histogram. Math. Probl. Eng. 2017, 12. Article ID 7206041. https://​doi.​org/​10.​1155/​2017/​7206041
28.
go back to reference Huang, C., Tianjun, F., Chen, H.: Text-based video content classification for online video-sharing sites. J. Am. Soc. Inform. Sci. Technol. 61(5), 891–906 (2010)CrossRef Huang, C., Tianjun, F., Chen, H.: Text-based video content classification for online video-sharing sites. J. Am. Soc. Inform. Sci. Technol. 61(5), 891–906 (2010)CrossRef
31.
go back to reference Marsden, M., et al.: ResnetCrowd: a residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE (2017). https://doi.org/10.48550/arXiv.1705.10698 Marsden, M., et al.: ResnetCrowd: a residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE (2017). https://​doi.​org/​10.​48550/​arXiv.​1705.​10698
38.
go back to reference Sreekanth, N., SasiKiran, J., Obulesu, A., Mallikarjuna Reddy, A.: key frame extraction for content based lecture video retrieval and video summarisation framework. European J. Mol. Clin. Med. 7(11), 496–507 (2020). ISSN 2515-8260 Sreekanth, N., SasiKiran, J., Obulesu, A., Mallikarjuna Reddy, A.: key frame extraction for content based lecture video retrieval and video summarisation framework. European J. Mol. Clin. Med. 7(11), 496–507 (2020). ISSN 2515-8260
39.
go back to reference Jai Shankar, B., Murugan, K., Obulesu, A., Finney Daniel Shadrach, S., Anitha, R.: MRI image segmentation using bat optimization algorithm with fuzzy C means (BOA-FCM) clustering. J. Med. Imaging Health Inform. 11(3), 661–666 (2021) Jai Shankar, B., Murugan, K., Obulesu, A., Finney Daniel Shadrach, S., Anitha, R.: MRI image segmentation using bat optimization algorithm with fuzzy C means (BOA-FCM) clustering. J. Med. Imaging Health Inform. 11(3), 661–666 (2021)
40.
go back to reference Obulesh, A., et al.: Central nervous system tumour classification using residual neural network, Purakala. UGC Care J. 31(21) (2020). ISSN 0971-2143 Obulesh, A., et al.: Central nervous system tumour classification using residual neural network, Purakala. UGC Care J. 31(21) (2020). ISSN 0971-2143
41.
go back to reference Obulesh, A., et al.: Traffic-sign classification using machine learning concepts, Tathapi. UGC Care Listed J. 19(8) (2020). ISSN 2320-0693 Obulesh, A., et al.: Traffic-sign classification using machine learning concepts, Tathapi. UGC Care Listed J. 19(8) (2020). ISSN 2320-0693
43.
go back to reference An, G., Zheng, Z., Wu, D., Zhou, W.: Deep spectral feature pyramid in the frequency domain for long-term action recognition. J. Vis. Commun. Image Represent. 64, 102650 (2019)CrossRef An, G., Zheng, Z., Wu, D., Zhou, W.: Deep spectral feature pyramid in the frequency domain for long-term action recognition. J. Vis. Commun. Image Represent. 64, 102650 (2019)CrossRef
44.
go back to reference Xiao, J., Cui, X., Li, F.: Human action recognition based on convolutional neural network and spatial pyramid representation. J. Vis. Commun. Image Represent. 71, 102722 (2020)CrossRef Xiao, J., Cui, X., Li, F.: Human action recognition based on convolutional neural network and spatial pyramid representation. J. Vis. Commun. Image Represent. 71, 102722 (2020)CrossRef
45.
go back to reference Tiger, M., Heintz, F.: Incremental reasoning in probabilistic signal temporal logic. Int. J. Approximate Reasoning 119, 325–352 (2020)MathSciNetCrossRefMATH Tiger, M., Heintz, F.: Incremental reasoning in probabilistic signal temporal logic. Int. J. Approximate Reasoning 119, 325–352 (2020)MathSciNetCrossRefMATH
Metadata
Title
Video Content Analysis Using Deep Learning Methods
Authors
Gara Kiran Kumar
Athota Kavitha
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_18

Premium Partner