Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-04-2019 | Regular Paper | Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019

Video instance search via spatial fusion of visual words and object proposals

Journal:
International Journal of Multimedia Information Retrieval > Issue 3/2019
Authors:
Vinh-Tiep Nguyen, Duy Dinh Le, Minh-Triet Tran, Tam V. Nguyen, Thanh Duc Ngo, Shin’ichi Satoh, Duc Anh Duong
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Most popular systems for object instance search are based on the bag-of-visual-word model. The inherent weaknesses of this standard model such as quantization error, unstructured representation, burstiness phenomenon are to some extent solved. However, it has a serious problem of searching small objects on a database with cluttered background. In many situations, even the irrelevant objects which share the same texture or shape with a query object get higher score than relevant ones. To overcome this problem, we propose a novel fusion method to significantly boost the accuracy of instance search systems. Firstly, we use the state-of-the-art object detector with denser feature for finding object bounding box and similarity score. Secondly, to exploit the spatial relationship of each visual word with an object proposal, a detected area that might contain a query object, we define three categories of visual word pairs, i.e., discriminative, weak relevant, and context inferred ones. Finally, we propose a new re-ranking scheme with three weighting functions corresponding to the three categories of visual word pairs to compute the final similarity score between a query topic and a video shot. To illustrate the efficiency of the proposed method, we conduct experiments on datasets which have a wide variety of types of query objects. Experimental results on TRECVID Instance Search datasets (INS2013 and INS2014) show the superiority of our proposed method over the state-of-the-art approaches.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019 Go to the issue

Premium Partner

    Image Credits