Skip to main content
Top

2025 | OriginalPaper | Chapter

5. Viscoelastic Lubrication Using the Second-Order Fluid

Authors : Alexandros T. Oratis, Vincent Bertin, Minkush Kansal, Jacco H. Snoeijer

Published in: Interfacial Flows—The Power and Beauty of Asymptotic Methods

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter explores the behavior of thin-film lubrication flows between solid surfaces, a phenomenon prevalent in various natural and engineered systems. It begins by discussing the fundamental role of lubrication in reducing friction and enhancing movement in both biological joints and mechanical components. The text then introduces the second-order fluid model, which is used to incorporate viscoelasticity into lubrication equations through long-wave expansions. This model simplifies the analysis by allowing the use of Tanner’s theorem, which provides exact expressions for liquid pressure and stresses without solving the full viscoelastic problem. The chapter delves into the governing equations and the lubrication approximation, comparing Newtonian and viscoelastic lubrication flows. It highlights how viscoelastic effects lead to non-trivial pressure variations across the film thickness, unlike Newtonian lubrication where pressure remains uniform. The applications section presents several case studies, including pressure drop along a channel, lift on sliding objects, and drag forces. These examples illustrate how viscoelasticity can enhance lift forces and affect drag, depending on the geometry and motion of the objects. The chapter concludes by discussing the limitations of the second-order fluid model and suggests future directions for research, particularly in the context of interfacial flows and thin liquid films.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
go back to reference Ardekani, A. M., Rangel, R. H., Joseph, D. D. (2008) Two spheres in a free stream of a second-order fluid. Physics of Fluids, 20(6). Ardekani, A. M., Rangel, R. H., Joseph, D. D. (2008) Two spheres in a free stream of a second-order fluid. Physics of Fluids,  20(6).
go back to reference Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge university Press. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge university Press.
go back to reference Becker, L. E., McKinley, G. H., & Stone, H. A. (1996). Sedimentation of a sphere near a plane wall: weak non-newtonian and inertial effects. Journal of Non-Newtonian Fluid Mechanics, 63(2–3), 201–233. Becker, L. E., McKinley, G. H., & Stone, H. A. (1996). Sedimentation of a sphere near a plane wall: weak non-newtonian and inertial effects. Journal of Non-Newtonian Fluid Mechanics, 63(2–3), 201–233.
go back to reference Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids. Vol. 1: Fluid mechanics.
go back to reference Bourgin, P. (1982). Second order effects in non-newtonian lubrication theory. a general perturbation approach. The Journal of Lubrication Technology, 104, 547–552. Bourgin, P. (1982). Second order effects in non-newtonian lubrication theory. a general perturbation approach. The Journal of Lubrication Technology, 104, 547–552.
go back to reference Boyko, E., & Stone, H. A. (2021). Reciprocal theorem for calculating the flow rate-pressure drop relation for complex fluids in narrow geometries. Physical Review Fluids, 6(8), L081301. Boyko, E., & Stone, H. A. (2021). Reciprocal theorem for calculating the flow rate-pressure drop relation for complex fluids in narrow geometries. Physical Review Fluids, 6(8), L081301.
go back to reference Brindley, G., Davies, J. M., & Walters, K. (1976). Elastico-viscous squeeze films. part i. Journal of Non-Newtonian Fluid Mechanics,1(1), 19–37. Brindley, G., Davies, J. M., & Walters, K. (1976). Elastico-viscous squeeze films. part i. Journal of Non-Newtonian Fluid Mechanics,1(1), 19–37.
go back to reference Campbell, C. S. (1989). Self-lubrication for long runout landslides. The Journal of Geology, 97(6), 653–665. Campbell, C. S. (1989). Self-lubrication for long runout landslides. The Journal of Geology, 97(6), 653–665.
go back to reference Cao, D., Dvoriashyna, M., Liu, S., Lauga, E., & Wu, Y. (2022). Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids. Proceedings of the National Academy of Sciences, 119(45), e2212078119. Cao, D., Dvoriashyna, M., Liu, S., Lauga, E., & Wu, Y. (2022). Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids. Proceedings of the National Academy of Sciences, 119(45), e2212078119.
go back to reference Datt, C., Kansal, M., & Snoeijer, J. H. (2022). A thin-film equation for a viscoelastic fluid, and its application to the landau-levich problem. Journal of Non-Newtonian Fluid Mechanics, 305, 104816. Datt, C., Kansal, M., & Snoeijer, J. H. (2022). A thin-film equation for a viscoelastic fluid, and its application to the landau-levich problem. Journal of Non-Newtonian Fluid Mechanics, 305, 104816.
go back to reference De Corato, M., Greco, F., & Maffettone, P. L. (2016). Reply to “comment on ‘locomotion of a microorganism in weakly viscoelastic liquids”’. Physical Review E, 94(5), 057102. De Corato, M., Greco, F., & Maffettone, P. L. (2016). Reply to “comment on ‘locomotion of a microorganism in weakly viscoelastic liquids”’. Physical Review E, 94(5), 057102.
go back to reference Faroughi, S. A., Fernandes, C., Nóbrega, J. M., & McKinley, G. H. (2020). A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 277, 104218. Faroughi, S. A., Fernandes, C., Nóbrega, J. M., & McKinley, G. H. (2020). A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 277, 104218.
go back to reference Feng, J., Huang, P. Y., & Joseph, D. D. (1996). Dynamic simulation of sedimentation of solid particles in an oldroyd-b fluid. Journal of Non-Newtonian Fluid Mechanics, 63(1), 63–88. Feng, J., Huang, P. Y., & Joseph, D. D. (1996). Dynamic simulation of sedimentation of solid particles in an oldroyd-b fluid. Journal of Non-Newtonian Fluid Mechanics, 63(1), 63–88.
go back to reference Fitz-Gerald, J. M. (1969). Mechanics of red-cell motion through very narrow capillaries. Proceedings of the Royal Society B, 174(1035), 193–227. Fitz-Gerald, J. M. (1969). Mechanics of red-cell motion through very narrow capillaries. Proceedings of the Royal Society B,  174(1035), 193–227.
go back to reference Hamrock, B. J., Schmid, S. R., Jacobson, B. O. (2004). Fundamentals of fluid film lubrication. CRC Press. Hamrock, B. J., Schmid, S. R., Jacobson, B. O. (2004). Fundamentals of fluid film lubrication. CRC Press.
go back to reference Housiadas, K. D., & Tanner, R. I. (2016). A high-order perturbation solution for the steady sedimentation of a sphere in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 233, 166–180. Housiadas, K. D., & Tanner, R. I. (2016). A high-order perturbation solution for the steady sedimentation of a sphere in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 233, 166–180.
go back to reference Hu, H. H., & Joseph, D. D. (1999). Lift on a sphere near a plane wall in a second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 88(1–2), 173–184. Hu, H. H., & Joseph, D. D. (1999). Lift on a sphere near a plane wall in a second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 88(1–2), 173–184.
go back to reference Huang, P., Li, Z., Meng, Y., & Wen, S. (2002). Study on thin film lubrication with second-order fluid. Journal of Tribology, 124(3), 547–552. Huang, P., Li, Z., Meng, Y., & Wen, S. (2002). Study on thin film lubrication with second-order fluid. Journal of Tribology, 124(3), 547–552.
go back to reference Jeffrey, D. J., & Onishi, Y. (1981). The slow motion of a cylinder next to a plane wall. The Quarterly Journal of Mechanics and Applied Mathematics, 34(2), 129–137. Jeffrey, D. J., & Onishi, Y. (1981). The slow motion of a cylinder next to a plane wall. The Quarterly Journal of Mechanics and Applied Mathematics, 34(2), 129–137.
go back to reference Jones, M. B., Fulford, G. R., Please, C. P., McElwain, D. L. S., & Collins, M. J. (2008). Elastohydrodynamics of the eyelid wiper. Bulletin of Mathematical Biology, 70, 323–343. Jones, M. B., Fulford, G. R., Please, C. P., McElwain, D. L. S., & Collins, M. J. (2008). Elastohydrodynamics of the eyelid wiper. Bulletin of Mathematical Biology, 70, 323–343.
go back to reference Joseph, D. D., & Feng, J. (1996). A note on the forces that move particles in a second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 64(2–3), 299–302. Joseph, D. D., & Feng, J. (1996). A note on the forces that move particles in a second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 64(2–3), 299–302.
go back to reference Joseph, D. D., Liu, Y. J., Poletto, M., & Feng, J. (1994). Aggregation and dispersion of spheres falling in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 54, 45–86. Joseph, D. D., Liu, Y. J., Poletto, M., & Feng, J. (1994). Aggregation and dispersion of spheres falling in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 54, 45–86.
go back to reference Kansal, M., Bertin, V., Datt, C., Eggers, J., & Snoeijer, J. H. (2024). Viscoelastic wetting: Cox-voinov theory with normal stress effects. Journal of Fluid Mechanics, 985, A17. Kansal, M., Bertin, V., Datt, C., Eggers, J., & Snoeijer, J. H. (2024). Viscoelastic wetting: Cox-voinov theory with normal stress effects. Journal of Fluid Mechanics, 985, A17.
go back to reference Leal, L. G. (1975). The slow motion of slender rod-like particles in a second-order fluid. Journal of Fluid Mechanics, 69(2), 305–337. Leal, L. G. (1975). The slow motion of slender rod-like particles in a second-order fluid. Journal of Fluid Mechanics, 69(2), 305–337.
go back to reference Leslie, F. M., & Tanner, R. I. (1961). The slow flow of a visco-elastic liquid past a sphere. The Quarterly Journal of Mechanics and Applied Mathematics, 14(1), 36–48. Leslie, F. M., & Tanner, R. I. (1961). The slow flow of a visco-elastic liquid past a sphere. The Quarterly Journal of Mechanics and Applied Mathematics, 14(1), 36–48.
go back to reference Mani, M., Gopinath, A., & Mahadevan, L. (2012). How things get stuck: kinetics, elastohydrodynamics, and soft adhesion. Physical Review Letters, 108(22), 226104. Mani, M., Gopinath, A., & Mahadevan, L. (2012). How things get stuck: kinetics, elastohydrodynamics, and soft adhesion. Physical Review Letters, 108(22), 226104.
go back to reference Martin, A., Clain, J., Buguin, A., & Brochard-Wyart, F. (2002). Wetting transitions at soft, sliding interfaces. Physical Review E, 65(3), 031605. Martin, A., Clain, J., Buguin, A., & Brochard-Wyart, F. (2002). Wetting transitions at soft, sliding interfaces. Physical Review E,  65(3), 031605.
go back to reference Morozov, A., Spagnolie, S. E. (2015). Introduction to complex fluids. Complex Fluids in Biological Systems: Experiment, Theory, and Computation, 3–52. Morozov, A., Spagnolie, S. E. (2015). Introduction to complex fluids. Complex Fluids in Biological Systems: Experiment, Theory, and Computation, 3–52.
go back to reference Mow, V. C., & Lai, W. M. (1979). Mechanics of animal joints. Annual Review of Fluid Mechanics, 11(1), 247–288. Mow, V. C., & Lai, W. M. (1979). Mechanics of animal joints. Annual Review of Fluid Mechanics, 11(1), 247–288.
go back to reference Pandey, A., Karpitschka, S., Venner, C. H., & Snoeijer, J. H. (2016). Lubrication of soft viscoelastic solids. Journal of Fluid Mechanics, 799, 433–447. Pandey, A., Karpitschka, S., Venner, C. H., & Snoeijer, J. H. (2016). Lubrication of soft viscoelastic solids. Journal of Fluid Mechanics, 799, 433–447.
go back to reference Phan-Thien, N., & Tanner, R. I. (1983). Viscoelastic squeeze-film flows-maxwell fluids. Journal of Fluid Mechanics, 129, 265–281. Phan-Thien, N., & Tanner, R. I. (1983). Viscoelastic squeeze-film flows-maxwell fluids. Journal of Fluid Mechanics, 129, 265–281.
go back to reference Phillips, R. J. (1996). Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid. Journal of Fluid Mechanics, 315, 345–365. Phillips, R. J. (1996). Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid. Journal of Fluid Mechanics, 315, 345–365.
go back to reference Reynolds, O. (1886). Iv. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Transactions of the Royal Society, (177), 157–234. Reynolds, O. (1886). Iv. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Transactions of the Royal Society, (177), 157–234.
go back to reference Saintyves, B., Jules, T., Salez, T., & Mahadevan, L. (2016). Self-sustained lift and low friction via soft lubrication. Proceedings of the National Academy of Sciences, 113(21), 5847–5849. Saintyves, B., Jules, T., Salez, T., & Mahadevan, L. (2016). Self-sustained lift and low friction via soft lubrication. Proceedings of the National Academy of Sciences, 113(21), 5847–5849.
go back to reference Salez, T., & Mahadevan, L. (2015). Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. Journal of Fluid Mechanics, 779, 181–196. Salez, T., & Mahadevan, L. (2015). Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. Journal of Fluid Mechanics, 779, 181–196.
go back to reference Sawyer, W. G., & Tichy, J. A. (1998). Non-newtonian lubrication with the second-order fluid. Journal of Tribology, 120, 622–628. Sawyer, W. G., & Tichy, J. A. (1998). Non-newtonian lubrication with the second-order fluid. Journal of Tribology, 120, 622–628.
go back to reference Sekimoto, K., & Leibler, L. (1993). A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. EPL, 23(2), 113. Sekimoto, K., & Leibler, L. (1993). A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. EPL, 23(2), 113.
go back to reference Singh, P., & Joseph, D. D. (2000). Sedimentation of a sphere near a vertical wall in an oldroyd-b fluid. Journal of Non-Newtonian Fluid Mechanics, 94(2–3), 179–203. Singh, P., & Joseph, D. D. (2000). Sedimentation of a sphere near a vertical wall in an oldroyd-b fluid. Journal of Non-Newtonian Fluid Mechanics, 94(2–3), 179–203.
go back to reference Skotheim, J. M., & Mahadevan, L. (2004). Soft lubrication. Physical Review Letters, 92(24), 245509. Skotheim, J. M., & Mahadevan, L. (2004). Soft lubrication. Physical Review Letters, 92(24), 245509.
go back to reference Tanner, R. I. (2000). Engineering rheology (Vol. 52). OUP Oxford. Tanner, R. I. (2000). Engineering rheology (Vol. 52). OUP Oxford.
go back to reference Tichy, J. A. (1996). Non-newtonian lubrication with the convected maxwell model. Transactions of the ASME Journal of Tribology, 118, 344–348. Tichy, J. A. (1996). Non-newtonian lubrication with the convected maxwell model. Transactions of the ASME Journal of Tribology, 118, 344–348.
go back to reference Veltkamp, B., Jagielka, J., Velikov, K. P., & Bonn, D. (2023). Lubrication with non-newtonian fluids. Physical Review Applied, 19(1), 014056. Veltkamp, B., Jagielka, J., Velikov, K. P., & Bonn, D. (2023). Lubrication with non-newtonian fluids. Physical Review Applied, 19(1), 014056.
go back to reference Veltkamp, B., Velikov, K. P., Venner, C. H., & Bonn, D. (2021). Lubricated friction and the hersey number. Physical Review Letters, 126(4), 044301. Veltkamp, B., Velikov, K. P., Venner, C. H., & Bonn, D. (2021). Lubricated friction and the hersey number. Physical Review Letters, 126(4), 044301.
go back to reference Villey, R., Martinot, E., Cottin-Bizonne, C., Phaner-Goutorbe, M., Léger, L., Restagno, F., & Charlaix, E. (2013). Effect of surface elasticity on the rheology of nanometric liquids. Physical Review Letters, 111(21), 215701. Villey, R., Martinot, E., Cottin-Bizonne, C., Phaner-Goutorbe, M., Léger, L., Restagno, F., & Charlaix, E. (2013). Effect of surface elasticity on the rheology of nanometric liquids. Physical Review Letters, 111(21), 215701.
go back to reference Vishnampet, R., & Saintillan, D. (2012). Concentration instability of sedimenting spheres in a second-order fluid. Physics of Fluids, 24(7), 073302. Vishnampet, R., & Saintillan, D. (2012). Concentration instability of sedimenting spheres in a second-order fluid. Physics of Fluids, 24(7), 073302.
Metadata
Title
Viscoelastic Lubrication Using the Second-Order Fluid
Authors
Alexandros T. Oratis
Vincent Bertin
Minkush Kansal
Jacco H. Snoeijer
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78764-5_5

Premium Partners